Properties

Label 2-212160-1.1-c1-0-111
Degree $2$
Conductor $212160$
Sign $1$
Analytic cond. $1694.10$
Root an. cond. $41.1595$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s + 2·7-s + 9-s + 6·11-s + 13-s − 15-s − 17-s + 2·19-s − 2·21-s − 6·23-s + 25-s − 27-s + 9·29-s + 9·31-s − 6·33-s + 2·35-s + 12·37-s − 39-s + 6·41-s − 6·43-s + 45-s − 12·47-s − 3·49-s + 51-s + 3·53-s + 6·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s + 0.755·7-s + 1/3·9-s + 1.80·11-s + 0.277·13-s − 0.258·15-s − 0.242·17-s + 0.458·19-s − 0.436·21-s − 1.25·23-s + 1/5·25-s − 0.192·27-s + 1.67·29-s + 1.61·31-s − 1.04·33-s + 0.338·35-s + 1.97·37-s − 0.160·39-s + 0.937·41-s − 0.914·43-s + 0.149·45-s − 1.75·47-s − 3/7·49-s + 0.140·51-s + 0.412·53-s + 0.809·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 212160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 212160 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(212160\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 13 \cdot 17\)
Sign: $1$
Analytic conductor: \(1694.10\)
Root analytic conductor: \(41.1595\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 212160,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.563106501\)
\(L(\frac12)\) \(\approx\) \(4.563106501\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
13 \( 1 - T \)
17 \( 1 + T \)
good7 \( 1 - 2 T + p T^{2} \)
11 \( 1 - 6 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 - 9 T + p T^{2} \)
31 \( 1 - 9 T + p T^{2} \)
37 \( 1 - 12 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 + 6 T + p T^{2} \)
47 \( 1 + 12 T + p T^{2} \)
53 \( 1 - 3 T + p T^{2} \)
59 \( 1 - 7 T + p T^{2} \)
61 \( 1 - 6 T + p T^{2} \)
67 \( 1 - 13 T + p T^{2} \)
71 \( 1 + 10 T + p T^{2} \)
73 \( 1 - 14 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 + 2 T + p T^{2} \)
89 \( 1 - 15 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.95583177693866, −12.48440493888128, −11.75100342504403, −11.70100995277018, −11.38013512307386, −10.73827090969989, −10.05256618196958, −9.781793478332343, −9.452508293745314, −8.602607988668209, −8.353538656100840, −7.879884892330949, −7.171605833976050, −6.477165161826785, −6.338540124021202, −6.001265468114295, −5.076363550583205, −4.774921039710906, −4.225069645101599, −3.781884615450882, −3.036319894312253, −2.273784212703334, −1.748849126986918, −0.9823946657030573, −0.7918428971755385, 0.7918428971755385, 0.9823946657030573, 1.748849126986918, 2.273784212703334, 3.036319894312253, 3.781884615450882, 4.225069645101599, 4.774921039710906, 5.076363550583205, 6.001265468114295, 6.338540124021202, 6.477165161826785, 7.171605833976050, 7.879884892330949, 8.353538656100840, 8.602607988668209, 9.452508293745314, 9.781793478332343, 10.05256618196958, 10.73827090969989, 11.38013512307386, 11.70100995277018, 11.75100342504403, 12.48440493888128, 12.95583177693866

Graph of the $Z$-function along the critical line