Properties

Label 2-2100-1.1-c3-0-50
Degree $2$
Conductor $2100$
Sign $-1$
Analytic cond. $123.904$
Root an. cond. $11.1312$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 7·7-s + 9·9-s − 26·11-s + 39·13-s + 101·17-s − 48·19-s − 21·21-s − 57·23-s + 27·27-s − 291·29-s − 79·31-s − 78·33-s − 322·37-s + 117·39-s + 455·41-s + 307·43-s − 508·47-s + 49·49-s + 303·51-s + 31·53-s − 144·57-s + 211·59-s − 797·61-s − 63·63-s + 924·67-s − 171·69-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.377·7-s + 1/3·9-s − 0.712·11-s + 0.832·13-s + 1.44·17-s − 0.579·19-s − 0.218·21-s − 0.516·23-s + 0.192·27-s − 1.86·29-s − 0.457·31-s − 0.411·33-s − 1.43·37-s + 0.480·39-s + 1.73·41-s + 1.08·43-s − 1.57·47-s + 1/7·49-s + 0.831·51-s + 0.0803·53-s − 0.334·57-s + 0.465·59-s − 1.67·61-s − 0.125·63-s + 1.68·67-s − 0.298·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2100 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2100\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(123.904\)
Root analytic conductor: \(11.1312\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2100,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - p T \)
5 \( 1 \)
7 \( 1 + p T \)
good11 \( 1 + 26 T + p^{3} T^{2} \)
13 \( 1 - 3 p T + p^{3} T^{2} \)
17 \( 1 - 101 T + p^{3} T^{2} \)
19 \( 1 + 48 T + p^{3} T^{2} \)
23 \( 1 + 57 T + p^{3} T^{2} \)
29 \( 1 + 291 T + p^{3} T^{2} \)
31 \( 1 + 79 T + p^{3} T^{2} \)
37 \( 1 + 322 T + p^{3} T^{2} \)
41 \( 1 - 455 T + p^{3} T^{2} \)
43 \( 1 - 307 T + p^{3} T^{2} \)
47 \( 1 + 508 T + p^{3} T^{2} \)
53 \( 1 - 31 T + p^{3} T^{2} \)
59 \( 1 - 211 T + p^{3} T^{2} \)
61 \( 1 + 797 T + p^{3} T^{2} \)
67 \( 1 - 924 T + p^{3} T^{2} \)
71 \( 1 - 212 T + p^{3} T^{2} \)
73 \( 1 + 22 T + p^{3} T^{2} \)
79 \( 1 - 874 T + p^{3} T^{2} \)
83 \( 1 - 587 T + p^{3} T^{2} \)
89 \( 1 + 266 T + p^{3} T^{2} \)
97 \( 1 + 1822 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.204223376201054857905827035118, −7.78789721677325686217128866770, −6.90155183786898252037215267280, −5.90096837887017076649224271666, −5.29651482453059819919069255760, −3.98683928744130890965534548839, −3.43725513853501899033649223810, −2.40556545567456754515392357491, −1.36628170137343436713209295371, 0, 1.36628170137343436713209295371, 2.40556545567456754515392357491, 3.43725513853501899033649223810, 3.98683928744130890965534548839, 5.29651482453059819919069255760, 5.90096837887017076649224271666, 6.90155183786898252037215267280, 7.78789721677325686217128866770, 8.204223376201054857905827035118

Graph of the $Z$-function along the critical line