Properties

Label 2-2100-1.1-c3-0-4
Degree $2$
Conductor $2100$
Sign $1$
Analytic cond. $123.904$
Root an. cond. $11.1312$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 7·7-s + 9·9-s − 26·11-s − 39·13-s − 101·17-s − 48·19-s − 21·21-s + 57·23-s − 27·27-s − 291·29-s − 79·31-s + 78·33-s + 322·37-s + 117·39-s + 455·41-s − 307·43-s + 508·47-s + 49·49-s + 303·51-s − 31·53-s + 144·57-s + 211·59-s − 797·61-s + 63·63-s − 924·67-s − 171·69-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.377·7-s + 1/3·9-s − 0.712·11-s − 0.832·13-s − 1.44·17-s − 0.579·19-s − 0.218·21-s + 0.516·23-s − 0.192·27-s − 1.86·29-s − 0.457·31-s + 0.411·33-s + 1.43·37-s + 0.480·39-s + 1.73·41-s − 1.08·43-s + 1.57·47-s + 1/7·49-s + 0.831·51-s − 0.0803·53-s + 0.334·57-s + 0.465·59-s − 1.67·61-s + 0.125·63-s − 1.68·67-s − 0.298·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2100 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2100\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(123.904\)
Root analytic conductor: \(11.1312\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2100,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.9430276991\)
\(L(\frac12)\) \(\approx\) \(0.9430276991\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + p T \)
5 \( 1 \)
7 \( 1 - p T \)
good11 \( 1 + 26 T + p^{3} T^{2} \)
13 \( 1 + 3 p T + p^{3} T^{2} \)
17 \( 1 + 101 T + p^{3} T^{2} \)
19 \( 1 + 48 T + p^{3} T^{2} \)
23 \( 1 - 57 T + p^{3} T^{2} \)
29 \( 1 + 291 T + p^{3} T^{2} \)
31 \( 1 + 79 T + p^{3} T^{2} \)
37 \( 1 - 322 T + p^{3} T^{2} \)
41 \( 1 - 455 T + p^{3} T^{2} \)
43 \( 1 + 307 T + p^{3} T^{2} \)
47 \( 1 - 508 T + p^{3} T^{2} \)
53 \( 1 + 31 T + p^{3} T^{2} \)
59 \( 1 - 211 T + p^{3} T^{2} \)
61 \( 1 + 797 T + p^{3} T^{2} \)
67 \( 1 + 924 T + p^{3} T^{2} \)
71 \( 1 - 212 T + p^{3} T^{2} \)
73 \( 1 - 22 T + p^{3} T^{2} \)
79 \( 1 - 874 T + p^{3} T^{2} \)
83 \( 1 + 587 T + p^{3} T^{2} \)
89 \( 1 + 266 T + p^{3} T^{2} \)
97 \( 1 - 1822 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.902290066467846118764020001027, −7.72971932756953662297598701881, −7.32872666951037257100919533520, −6.31617834774423730954499120720, −5.56413411615059705932925016292, −4.72808751150001745091144374003, −4.09507845295283943174457005355, −2.67783289368458826341333594204, −1.88023975921063487974625944762, −0.43802819915040762544266938270, 0.43802819915040762544266938270, 1.88023975921063487974625944762, 2.67783289368458826341333594204, 4.09507845295283943174457005355, 4.72808751150001745091144374003, 5.56413411615059705932925016292, 6.31617834774423730954499120720, 7.32872666951037257100919533520, 7.72971932756953662297598701881, 8.902290066467846118764020001027

Graph of the $Z$-function along the critical line