Properties

Label 2-210-7.4-c1-0-0
Degree $2$
Conductor $210$
Sign $-0.605 - 0.795i$
Analytic cond. $1.67685$
Root an. cond. $1.29493$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.5 + 0.866i)2-s + (−0.5 + 0.866i)3-s + (−0.499 + 0.866i)4-s + (0.5 + 0.866i)5-s − 0.999·6-s + (−2 + 1.73i)7-s − 0.999·8-s + (−0.499 − 0.866i)9-s + (−0.499 + 0.866i)10-s + (−1.5 + 2.59i)11-s + (−0.499 − 0.866i)12-s + 5·13-s + (−2.5 − 0.866i)14-s − 0.999·15-s + (−0.5 − 0.866i)16-s + ⋯
L(s)  = 1  + (0.353 + 0.612i)2-s + (−0.288 + 0.499i)3-s + (−0.249 + 0.433i)4-s + (0.223 + 0.387i)5-s − 0.408·6-s + (−0.755 + 0.654i)7-s − 0.353·8-s + (−0.166 − 0.288i)9-s + (−0.158 + 0.273i)10-s + (−0.452 + 0.783i)11-s + (−0.144 − 0.249i)12-s + 1.38·13-s + (−0.668 − 0.231i)14-s − 0.258·15-s + (−0.125 − 0.216i)16-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 210 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.605 - 0.795i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 210 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.605 - 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(210\)    =    \(2 \cdot 3 \cdot 5 \cdot 7\)
Sign: $-0.605 - 0.795i$
Analytic conductor: \(1.67685\)
Root analytic conductor: \(1.29493\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{210} (151, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 210,\ (\ :1/2),\ -0.605 - 0.795i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.525737 + 1.06053i\)
\(L(\frac12)\) \(\approx\) \(0.525737 + 1.06053i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.5 - 0.866i)T \)
3 \( 1 + (0.5 - 0.866i)T \)
5 \( 1 + (-0.5 - 0.866i)T \)
7 \( 1 + (2 - 1.73i)T \)
good11 \( 1 + (1.5 - 2.59i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 - 5T + 13T^{2} \)
17 \( 1 + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (2.5 + 4.33i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (-4.5 - 7.79i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + 29T^{2} \)
31 \( 1 + (-5 + 8.66i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + (-0.5 - 0.866i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 - 9T + 41T^{2} \)
43 \( 1 - 8T + 43T^{2} \)
47 \( 1 + (1.5 + 2.59i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + (-1.5 + 2.59i)T + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + (6 - 10.3i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (4 + 6.92i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (4 - 6.92i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + 6T + 71T^{2} \)
73 \( 1 + (1 - 1.73i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (4 + 6.92i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + 83T^{2} \)
89 \( 1 + (3 + 5.19i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 - 8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.02338460356750465400396986902, −11.73606600420673610091317756613, −10.82626068472572192924194291725, −9.618196050010819659908072570289, −8.900696900732510841304835813667, −7.47734128277570284904337163165, −6.32955907448170344143974490838, −5.58825898059678389104892762382, −4.22024235165801335142444568945, −2.85378636880027908020367740970, 1.02322417706690795548072559386, 2.99224803241864908045648855600, 4.33468279326317223710761222660, 5.83792323122056917118241146102, 6.56254286947573514363381457416, 8.151825859177180696475849251217, 9.092326408704231611440935654637, 10.58958901551304442257682701023, 10.82073590091933448591265185424, 12.31377861508718605690444045591

Graph of the $Z$-function along the critical line