L(s) = 1 | + 2-s + 3-s + 4-s + 5-s + 6-s − 7-s + 8-s + 9-s + 10-s − 4·11-s + 12-s − 2·13-s − 14-s + 15-s + 16-s + 2·17-s + 18-s + 4·19-s + 20-s − 21-s − 4·22-s − 8·23-s + 24-s + 25-s − 2·26-s + 27-s − 28-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s − 0.377·7-s + 0.353·8-s + 1/3·9-s + 0.316·10-s − 1.20·11-s + 0.288·12-s − 0.554·13-s − 0.267·14-s + 0.258·15-s + 1/4·16-s + 0.485·17-s + 0.235·18-s + 0.917·19-s + 0.223·20-s − 0.218·21-s − 0.852·22-s − 1.66·23-s + 0.204·24-s + 1/5·25-s − 0.392·26-s + 0.192·27-s − 0.188·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 210 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 210 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.051866020\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.051866020\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 - T \) |
| 5 | \( 1 - T \) |
| 7 | \( 1 + T \) |
good | 11 | \( 1 + 4 T + p T^{2} \) |
| 13 | \( 1 + 2 T + p T^{2} \) |
| 17 | \( 1 - 2 T + p T^{2} \) |
| 19 | \( 1 - 4 T + p T^{2} \) |
| 23 | \( 1 + 8 T + p T^{2} \) |
| 29 | \( 1 + 2 T + p T^{2} \) |
| 31 | \( 1 + p T^{2} \) |
| 37 | \( 1 - 6 T + p T^{2} \) |
| 41 | \( 1 + 6 T + p T^{2} \) |
| 43 | \( 1 + 4 T + p T^{2} \) |
| 47 | \( 1 + p T^{2} \) |
| 53 | \( 1 + 10 T + p T^{2} \) |
| 59 | \( 1 - 12 T + p T^{2} \) |
| 61 | \( 1 - 14 T + p T^{2} \) |
| 67 | \( 1 + 12 T + p T^{2} \) |
| 71 | \( 1 + 8 T + p T^{2} \) |
| 73 | \( 1 - 10 T + p T^{2} \) |
| 79 | \( 1 - 16 T + p T^{2} \) |
| 83 | \( 1 + 12 T + p T^{2} \) |
| 89 | \( 1 - 10 T + p T^{2} \) |
| 97 | \( 1 - 2 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.62115045248245017930814813300, −11.61833146567347398303476851137, −10.23004044076404268793359028309, −9.709944301962926715043580749752, −8.185634457079877915713969006222, −7.31970008287706573052341981271, −5.97975998469911468351052676550, −4.95725936124254114017607791343, −3.44893990823261081236809071688, −2.27051973415844153304852765225,
2.27051973415844153304852765225, 3.44893990823261081236809071688, 4.95725936124254114017607791343, 5.97975998469911468351052676550, 7.31970008287706573052341981271, 8.185634457079877915713969006222, 9.709944301962926715043580749752, 10.23004044076404268793359028309, 11.61833146567347398303476851137, 12.62115045248245017930814813300