L(s) = 1 | + (−5.11 + 8.85i)2-s + (−4.5 − 7.79i)3-s + (−36.2 − 62.8i)4-s + (−11.8 + 20.5i)5-s + 92.0·6-s + (30.6 − 125. i)7-s + 414.·8-s + (−40.5 + 70.1i)9-s + (−121. − 210. i)10-s + (−232. − 403. i)11-s + (−326. + 565. i)12-s − 1.01e3·13-s + (958. + 915. i)14-s + 213.·15-s + (−957. + 1.65e3i)16-s + (−280. − 486. i)17-s + ⋯ |
L(s) = 1 | + (−0.903 + 1.56i)2-s + (−0.288 − 0.499i)3-s + (−1.13 − 1.96i)4-s + (−0.212 + 0.367i)5-s + 1.04·6-s + (0.236 − 0.971i)7-s + 2.28·8-s + (−0.166 + 0.288i)9-s + (−0.383 − 0.665i)10-s + (−0.580 − 1.00i)11-s + (−0.654 + 1.13i)12-s − 1.67·13-s + (1.30 + 1.24i)14-s + 0.245·15-s + (−0.935 + 1.61i)16-s + (−0.235 − 0.408i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 21 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.341 + 0.940i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.341 + 0.940i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.235494 - 0.165078i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.235494 - 0.165078i\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (4.5 + 7.79i)T \) |
| 7 | \( 1 + (-30.6 + 125. i)T \) |
good | 2 | \( 1 + (5.11 - 8.85i)T + (-16 - 27.7i)T^{2} \) |
| 5 | \( 1 + (11.8 - 20.5i)T + (-1.56e3 - 2.70e3i)T^{2} \) |
| 11 | \( 1 + (232. + 403. i)T + (-8.05e4 + 1.39e5i)T^{2} \) |
| 13 | \( 1 + 1.01e3T + 3.71e5T^{2} \) |
| 17 | \( 1 + (280. + 486. i)T + (-7.09e5 + 1.22e6i)T^{2} \) |
| 19 | \( 1 + (-693. + 1.20e3i)T + (-1.23e6 - 2.14e6i)T^{2} \) |
| 23 | \( 1 + (2.05e3 - 3.56e3i)T + (-3.21e6 - 5.57e6i)T^{2} \) |
| 29 | \( 1 + 2.38e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + (1.47e3 + 2.55e3i)T + (-1.43e7 + 2.47e7i)T^{2} \) |
| 37 | \( 1 + (-4.95e3 + 8.58e3i)T + (-3.46e7 - 6.00e7i)T^{2} \) |
| 41 | \( 1 + 4.47e3T + 1.15e8T^{2} \) |
| 43 | \( 1 - 5.18e3T + 1.47e8T^{2} \) |
| 47 | \( 1 + (-1.56e3 + 2.70e3i)T + (-1.14e8 - 1.98e8i)T^{2} \) |
| 53 | \( 1 + (570. + 988. i)T + (-2.09e8 + 3.62e8i)T^{2} \) |
| 59 | \( 1 + (1.37e4 + 2.38e4i)T + (-3.57e8 + 6.19e8i)T^{2} \) |
| 61 | \( 1 + (-1.05e4 + 1.82e4i)T + (-4.22e8 - 7.31e8i)T^{2} \) |
| 67 | \( 1 + (-2.77e4 - 4.81e4i)T + (-6.75e8 + 1.16e9i)T^{2} \) |
| 71 | \( 1 + 6.07e3T + 1.80e9T^{2} \) |
| 73 | \( 1 + (-8.38e3 - 1.45e4i)T + (-1.03e9 + 1.79e9i)T^{2} \) |
| 79 | \( 1 + (-2.42e3 + 4.19e3i)T + (-1.53e9 - 2.66e9i)T^{2} \) |
| 83 | \( 1 - 6.01e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + (-3.12e4 + 5.41e4i)T + (-2.79e9 - 4.83e9i)T^{2} \) |
| 97 | \( 1 + 6.36e4T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−16.99024184990649280752339102823, −15.89678226819538714757303367300, −14.56434737488541730233843468879, −13.50314498711475112594532765746, −11.13318506035209393954303444479, −9.610485331536739691646612393951, −7.76346036288667338088240328213, −7.11009184049610254783570598158, −5.35191017856911452163792293594, −0.28155428817559639907044665997,
2.36299147365530659116393497233, 4.67259239994761342123715478166, 8.113125646187576267229409539109, 9.506765308451379386004801898952, 10.45067917021049627520293797349, 12.09938114377609983444203564754, 12.44514274911028901307442877560, 14.88383781527088682716086942689, 16.55118276064083122127299158183, 17.74530542142103435184459712091