L(s) = 1 | + (−3.19 + 5.53i)2-s + (4.5 + 7.79i)3-s + (−4.41 − 7.64i)4-s + (−19.3 + 33.5i)5-s − 57.5·6-s + (−87.5 − 95.6i)7-s − 148.·8-s + (−40.5 + 70.1i)9-s + (−123. − 214. i)10-s + (288. + 499. i)11-s + (39.7 − 68.8i)12-s + 391.·13-s + (808. − 178. i)14-s − 348.·15-s + (614. − 1.06e3i)16-s + (664. + 1.15e3i)17-s + ⋯ |
L(s) = 1 | + (−0.564 + 0.978i)2-s + (0.288 + 0.499i)3-s + (−0.137 − 0.238i)4-s + (−0.346 + 0.599i)5-s − 0.652·6-s + (−0.674 − 0.737i)7-s − 0.817·8-s + (−0.166 + 0.288i)9-s + (−0.391 − 0.677i)10-s + (0.718 + 1.24i)11-s + (0.0796 − 0.137i)12-s + 0.642·13-s + (1.10 − 0.243i)14-s − 0.399·15-s + (0.599 − 1.03i)16-s + (0.557 + 0.966i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 21 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.970 - 0.240i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.970 - 0.240i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.114791 + 0.940356i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.114791 + 0.940356i\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-4.5 - 7.79i)T \) |
| 7 | \( 1 + (87.5 + 95.6i)T \) |
good | 2 | \( 1 + (3.19 - 5.53i)T + (-16 - 27.7i)T^{2} \) |
| 5 | \( 1 + (19.3 - 33.5i)T + (-1.56e3 - 2.70e3i)T^{2} \) |
| 11 | \( 1 + (-288. - 499. i)T + (-8.05e4 + 1.39e5i)T^{2} \) |
| 13 | \( 1 - 391.T + 3.71e5T^{2} \) |
| 17 | \( 1 + (-664. - 1.15e3i)T + (-7.09e5 + 1.22e6i)T^{2} \) |
| 19 | \( 1 + (471. - 816. i)T + (-1.23e6 - 2.14e6i)T^{2} \) |
| 23 | \( 1 + (-816. + 1.41e3i)T + (-3.21e6 - 5.57e6i)T^{2} \) |
| 29 | \( 1 + 1.46e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + (-1.95e3 - 3.38e3i)T + (-1.43e7 + 2.47e7i)T^{2} \) |
| 37 | \( 1 + (-8.15e3 + 1.41e4i)T + (-3.46e7 - 6.00e7i)T^{2} \) |
| 41 | \( 1 + 1.31e4T + 1.15e8T^{2} \) |
| 43 | \( 1 - 1.47e4T + 1.47e8T^{2} \) |
| 47 | \( 1 + (-3.40e3 + 5.90e3i)T + (-1.14e8 - 1.98e8i)T^{2} \) |
| 53 | \( 1 + (-1.00e3 - 1.74e3i)T + (-2.09e8 + 3.62e8i)T^{2} \) |
| 59 | \( 1 + (2.57e4 + 4.45e4i)T + (-3.57e8 + 6.19e8i)T^{2} \) |
| 61 | \( 1 + (2.05e4 - 3.55e4i)T + (-4.22e8 - 7.31e8i)T^{2} \) |
| 67 | \( 1 + (2.52e4 + 4.38e4i)T + (-6.75e8 + 1.16e9i)T^{2} \) |
| 71 | \( 1 - 3.99e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + (-2.78e4 - 4.82e4i)T + (-1.03e9 + 1.79e9i)T^{2} \) |
| 79 | \( 1 + (-3.15e4 + 5.46e4i)T + (-1.53e9 - 2.66e9i)T^{2} \) |
| 83 | \( 1 - 4.55e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + (7.84e3 - 1.35e4i)T + (-2.79e9 - 4.83e9i)T^{2} \) |
| 97 | \( 1 - 3.12e3T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−17.32457896799792680685549169209, −16.46621334729973753839585077466, −15.28091175938255730592532770559, −14.45488707215421780811473907423, −12.50507141260342186601110567731, −10.58961778243552219371916689167, −9.245271005216166249143835702644, −7.65268311827782394120043657193, −6.47103772572418322098874192107, −3.70396416083621652751346224856,
0.847065099873545780364881394854, 3.05949196601917328195645533906, 6.14476899852555871958750668652, 8.526987354037956290417673156129, 9.429180771353673380465630164394, 11.32754009764430338046869657439, 12.21420001837697700783114851422, 13.57297615398159351860169888367, 15.34713987950776964078557677214, 16.66509318585605293816148855240