# Properties

 Label 2-21-21.20-c21-0-10 Degree $2$ Conductor $21$ Sign $-0.998 + 0.0463i$ Analytic cond. $58.6902$ Root an. cond. $7.66095$ Motivic weight $21$ Arithmetic yes Rational no Primitive yes Self-dual no Analytic rank $0$

# Learn more

## Dirichlet series

 L(s)  = 1 + 1.22e3i·2-s + (−9.40e4 + 4.02e4i)3-s + 5.99e5·4-s + 3.45e7·5-s + (−4.92e7 − 1.15e8i)6-s + (−6.99e8 − 2.61e8i)7-s + 3.30e9i·8-s + (7.22e9 − 7.56e9i)9-s + 4.22e10i·10-s − 1.38e11i·11-s + (−5.63e10 + 2.41e10i)12-s − 1.98e11i·13-s + (3.20e11 − 8.56e11i)14-s + (−3.24e12 + 1.39e12i)15-s − 2.78e12·16-s − 1.12e13·17-s + ⋯
 L(s)  = 1 + 0.845i·2-s + (−0.919 + 0.393i)3-s + 0.285·4-s + 1.58·5-s + (−0.332 − 0.776i)6-s + (−0.936 − 0.350i)7-s + 1.08i·8-s + (0.690 − 0.723i)9-s + 1.33i·10-s − 1.60i·11-s + (−0.262 + 0.112i)12-s − 0.399i·13-s + (0.296 − 0.791i)14-s + (−1.45 + 0.622i)15-s − 0.632·16-s − 1.34·17-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 21 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.998 + 0.0463i)\, \overline{\Lambda}(22-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 21 ^{s/2} \, \Gamma_{\C}(s+21/2) \, L(s)\cr =\mathstrut & (-0.998 + 0.0463i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$21$$    =    $$3 \cdot 7$$ Sign: $-0.998 + 0.0463i$ Analytic conductor: $$58.6902$$ Root analytic conductor: $$7.66095$$ Motivic weight: $$21$$ Rational: no Arithmetic: yes Character: $\chi_{21} (20, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(2,\ 21,\ (\ :21/2),\ -0.998 + 0.0463i)$$

## Particular Values

 $$L(11)$$ $$\approx$$ $$1.183226788$$ $$L(\frac12)$$ $$\approx$$ $$1.183226788$$ $$L(\frac{23}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad3 $$1 + (9.40e4 - 4.02e4i)T$$
7 $$1 + (6.99e8 + 2.61e8i)T$$
good2 $$1 - 1.22e3iT - 2.09e6T^{2}$$
5 $$1 - 3.45e7T + 4.76e14T^{2}$$
11 $$1 + 1.38e11iT - 7.40e21T^{2}$$
13 $$1 + 1.98e11iT - 2.47e23T^{2}$$
17 $$1 + 1.12e13T + 6.90e25T^{2}$$
19 $$1 - 1.31e13iT - 7.14e26T^{2}$$
23 $$1 - 2.41e14iT - 3.94e28T^{2}$$
29 $$1 - 2.94e15iT - 5.13e30T^{2}$$
31 $$1 - 5.22e15iT - 2.08e31T^{2}$$
37 $$1 - 1.95e16T + 8.55e32T^{2}$$
41 $$1 + 8.86e16T + 7.38e33T^{2}$$
43 $$1 + 2.83e16T + 2.00e34T^{2}$$
47 $$1 + 5.37e17T + 1.30e35T^{2}$$
53 $$1 - 1.93e18iT - 1.62e36T^{2}$$
59 $$1 + 1.38e18T + 1.54e37T^{2}$$
61 $$1 - 2.80e18iT - 3.10e37T^{2}$$
67 $$1 - 1.55e19T + 2.22e38T^{2}$$
71 $$1 - 1.31e19iT - 7.52e38T^{2}$$
73 $$1 - 3.15e19iT - 1.34e39T^{2}$$
79 $$1 + 6.56e18T + 7.08e39T^{2}$$
83 $$1 + 1.99e20T + 1.99e40T^{2}$$
89 $$1 - 7.23e19T + 8.65e40T^{2}$$
97 $$1 + 6.71e19iT - 5.27e41T^{2}$$
show more
show less
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$

## Imaginary part of the first few zeros on the critical line

−14.04086356156699392881514577076, −13.03314183298060762730255513787, −11.20093754691613129259752759675, −10.24017240471808992580751004466, −8.918246408747535213812982637150, −6.79606246562795135028386477269, −6.07106730877741366203785249287, −5.31510761404439541536076807188, −3.13219116107122988271738542572, −1.36129800589992571513362946667, 0.30676487387292390798874870705, 1.95519535059498951972094091808, 2.29646876600029327401881020730, 4.61259022349338067511478987989, 6.28963763895193670116862787206, 6.77430332621691871076426373975, 9.579469683227536583187217465312, 10.13635096933744900820721677745, 11.51032554053990509566684741694, 12.77251543335382884750148186712