Properties

Label 2-21-1.1-c5-0-0
Degree $2$
Conductor $21$
Sign $1$
Analytic cond. $3.36806$
Root an. cond. $1.83522$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·2-s − 9·3-s + 4·4-s + 78·5-s + 54·6-s + 49·7-s + 168·8-s + 81·9-s − 468·10-s + 444·11-s − 36·12-s − 442·13-s − 294·14-s − 702·15-s − 1.13e3·16-s − 126·17-s − 486·18-s + 2.68e3·19-s + 312·20-s − 441·21-s − 2.66e3·22-s + 4.20e3·23-s − 1.51e3·24-s + 2.95e3·25-s + 2.65e3·26-s − 729·27-s + 196·28-s + ⋯
L(s)  = 1  − 1.06·2-s − 0.577·3-s + 1/8·4-s + 1.39·5-s + 0.612·6-s + 0.377·7-s + 0.928·8-s + 1/3·9-s − 1.47·10-s + 1.10·11-s − 0.0721·12-s − 0.725·13-s − 0.400·14-s − 0.805·15-s − 1.10·16-s − 0.105·17-s − 0.353·18-s + 1.70·19-s + 0.174·20-s − 0.218·21-s − 1.17·22-s + 1.65·23-s − 0.535·24-s + 0.946·25-s + 0.769·26-s − 0.192·27-s + 0.0472·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 21 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(21\)    =    \(3 \cdot 7\)
Sign: $1$
Analytic conductor: \(3.36806\)
Root analytic conductor: \(1.83522\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 21,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.8679490723\)
\(L(\frac12)\) \(\approx\) \(0.8679490723\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + p^{2} T \)
7 \( 1 - p^{2} T \)
good2 \( 1 + 3 p T + p^{5} T^{2} \)
5 \( 1 - 78 T + p^{5} T^{2} \)
11 \( 1 - 444 T + p^{5} T^{2} \)
13 \( 1 + 34 p T + p^{5} T^{2} \)
17 \( 1 + 126 T + p^{5} T^{2} \)
19 \( 1 - 2684 T + p^{5} T^{2} \)
23 \( 1 - 4200 T + p^{5} T^{2} \)
29 \( 1 + 5442 T + p^{5} T^{2} \)
31 \( 1 - 80 T + p^{5} T^{2} \)
37 \( 1 + 5434 T + p^{5} T^{2} \)
41 \( 1 - 7962 T + p^{5} T^{2} \)
43 \( 1 + 268 p T + p^{5} T^{2} \)
47 \( 1 + 13920 T + p^{5} T^{2} \)
53 \( 1 + 9594 T + p^{5} T^{2} \)
59 \( 1 - 27492 T + p^{5} T^{2} \)
61 \( 1 - 49478 T + p^{5} T^{2} \)
67 \( 1 + 59356 T + p^{5} T^{2} \)
71 \( 1 - 32040 T + p^{5} T^{2} \)
73 \( 1 + 61846 T + p^{5} T^{2} \)
79 \( 1 + 65776 T + p^{5} T^{2} \)
83 \( 1 - 40188 T + p^{5} T^{2} \)
89 \( 1 + 7974 T + p^{5} T^{2} \)
97 \( 1 + 143662 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.36075450000251963255343060863, −16.56884225489264724970550555241, −14.46939174443194527204088265586, −13.25027207263843350395263492753, −11.40781153803159857100215676377, −9.936270644191942781225122439573, −9.144255972555358989072155479188, −7.09693738861898260641749473988, −5.22421898438878262057715007347, −1.37484034225738829292120101458, 1.37484034225738829292120101458, 5.22421898438878262057715007347, 7.09693738861898260641749473988, 9.144255972555358989072155479188, 9.936270644191942781225122439573, 11.40781153803159857100215676377, 13.25027207263843350395263492753, 14.46939174443194527204088265586, 16.56884225489264724970550555241, 17.36075450000251963255343060863

Graph of the $Z$-function along the critical line