Properties

Label 2-20e2-5.4-c3-0-6
Degree $2$
Conductor $400$
Sign $-0.894 - 0.447i$
Analytic cond. $23.6007$
Root an. cond. $4.85806$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7i·3-s − 6i·7-s − 22·9-s + 43·11-s + 28i·13-s + 91i·17-s − 35·19-s + 42·21-s + 162i·23-s + 35i·27-s − 160·29-s − 42·31-s + 301i·33-s − 314i·37-s − 196·39-s + ⋯
L(s)  = 1  + 1.34i·3-s − 0.323i·7-s − 0.814·9-s + 1.17·11-s + 0.597i·13-s + 1.29i·17-s − 0.422·19-s + 0.436·21-s + 1.46i·23-s + 0.249i·27-s − 1.02·29-s − 0.243·31-s + 1.58i·33-s − 1.39i·37-s − 0.804·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(400\)    =    \(2^{4} \cdot 5^{2}\)
Sign: $-0.894 - 0.447i$
Analytic conductor: \(23.6007\)
Root analytic conductor: \(4.85806\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{400} (49, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 400,\ (\ :3/2),\ -0.894 - 0.447i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.546792950\)
\(L(\frac12)\) \(\approx\) \(1.546792950\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 - 7iT - 27T^{2} \)
7 \( 1 + 6iT - 343T^{2} \)
11 \( 1 - 43T + 1.33e3T^{2} \)
13 \( 1 - 28iT - 2.19e3T^{2} \)
17 \( 1 - 91iT - 4.91e3T^{2} \)
19 \( 1 + 35T + 6.85e3T^{2} \)
23 \( 1 - 162iT - 1.21e4T^{2} \)
29 \( 1 + 160T + 2.43e4T^{2} \)
31 \( 1 + 42T + 2.97e4T^{2} \)
37 \( 1 + 314iT - 5.06e4T^{2} \)
41 \( 1 + 203T + 6.89e4T^{2} \)
43 \( 1 - 92iT - 7.95e4T^{2} \)
47 \( 1 + 196iT - 1.03e5T^{2} \)
53 \( 1 + 82iT - 1.48e5T^{2} \)
59 \( 1 + 280T + 2.05e5T^{2} \)
61 \( 1 + 518T + 2.26e5T^{2} \)
67 \( 1 + 141iT - 3.00e5T^{2} \)
71 \( 1 + 412T + 3.57e5T^{2} \)
73 \( 1 - 763iT - 3.89e5T^{2} \)
79 \( 1 - 510T + 4.93e5T^{2} \)
83 \( 1 - 777iT - 5.71e5T^{2} \)
89 \( 1 - 945T + 7.04e5T^{2} \)
97 \( 1 - 1.24e3iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.04800686206738586350046521188, −10.33878462683401464361002083989, −9.367365767009723180605233287437, −8.916328029373309850884494876079, −7.55290888388414223994073033392, −6.38556181494375497412423532020, −5.30984016629710464406361477787, −4.00718254765487309133302652114, −3.72714629973999664474696684080, −1.67333006552176801852205846904, 0.52430139752224847275078268789, 1.77430323532526187344602828642, 2.99649552687594516601490132911, 4.58604461128653227671891498493, 5.96207732822383775842538285837, 6.73173794090874217727267818602, 7.52331073564011179322902942975, 8.524008431174238540375117713795, 9.356631225121501439067614207365, 10.58124976652088098601141289543

Graph of the $Z$-function along the critical line