L(s) = 1 | − 7i·3-s + 6i·7-s − 22·9-s + 43·11-s − 28i·13-s − 91i·17-s − 35·19-s + 42·21-s − 162i·23-s − 35i·27-s − 160·29-s − 42·31-s − 301i·33-s + 314i·37-s − 196·39-s + ⋯ |
L(s) = 1 | − 1.34i·3-s + 0.323i·7-s − 0.814·9-s + 1.17·11-s − 0.597i·13-s − 1.29i·17-s − 0.422·19-s + 0.436·21-s − 1.46i·23-s − 0.249i·27-s − 1.02·29-s − 0.243·31-s − 1.58i·33-s + 1.39i·37-s − 0.804·39-s + ⋯ |
Λ(s)=(=(400s/2ΓC(s)L(s)(−0.894+0.447i)Λ(4−s)
Λ(s)=(=(400s/2ΓC(s+3/2)L(s)(−0.894+0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
400
= 24⋅52
|
Sign: |
−0.894+0.447i
|
Analytic conductor: |
23.6007 |
Root analytic conductor: |
4.85806 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ400(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 400, ( :3/2), −0.894+0.447i)
|
Particular Values
L(2) |
≈ |
1.546792950 |
L(21) |
≈ |
1.546792950 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+7iT−27T2 |
| 7 | 1−6iT−343T2 |
| 11 | 1−43T+1.33e3T2 |
| 13 | 1+28iT−2.19e3T2 |
| 17 | 1+91iT−4.91e3T2 |
| 19 | 1+35T+6.85e3T2 |
| 23 | 1+162iT−1.21e4T2 |
| 29 | 1+160T+2.43e4T2 |
| 31 | 1+42T+2.97e4T2 |
| 37 | 1−314iT−5.06e4T2 |
| 41 | 1+203T+6.89e4T2 |
| 43 | 1+92iT−7.95e4T2 |
| 47 | 1−196iT−1.03e5T2 |
| 53 | 1−82iT−1.48e5T2 |
| 59 | 1+280T+2.05e5T2 |
| 61 | 1+518T+2.26e5T2 |
| 67 | 1−141iT−3.00e5T2 |
| 71 | 1+412T+3.57e5T2 |
| 73 | 1+763iT−3.89e5T2 |
| 79 | 1−510T+4.93e5T2 |
| 83 | 1+777iT−5.71e5T2 |
| 89 | 1−945T+7.04e5T2 |
| 97 | 1+1.24e3iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.58124976652088098601141289543, −9.356631225121501439067614207365, −8.524008431174238540375117713795, −7.52331073564011179322902942975, −6.73173794090874217727267818602, −5.96207732822383775842538285837, −4.58604461128653227671891498493, −2.99649552687594516601490132911, −1.77430323532526187344602828642, −0.52430139752224847275078268789,
1.67333006552176801852205846904, 3.72714629973999664474696684080, 4.00718254765487309133302652114, 5.30984016629710464406361477787, 6.38556181494375497412423532020, 7.55290888388414223994073033392, 8.916328029373309850884494876079, 9.367365767009723180605233287437, 10.33878462683401464361002083989, 11.04800686206738586350046521188