L(s) = 1 | + 9i·3-s − 26i·7-s − 54·9-s + 59·11-s − 28i·13-s + 5i·17-s + 109·19-s + 234·21-s − 194i·23-s − 243i·27-s + 32·29-s − 10·31-s + 531i·33-s − 198i·37-s + 252·39-s + ⋯ |
L(s) = 1 | + 1.73i·3-s − 1.40i·7-s − 2·9-s + 1.61·11-s − 0.597i·13-s + 0.0713i·17-s + 1.31·19-s + 2.43·21-s − 1.75i·23-s − 1.73i·27-s + 0.204·29-s − 0.0579·31-s + 2.80i·33-s − 0.879i·37-s + 1.03·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.983063971\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.983063971\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 - 9iT - 27T^{2} \) |
| 7 | \( 1 + 26iT - 343T^{2} \) |
| 11 | \( 1 - 59T + 1.33e3T^{2} \) |
| 13 | \( 1 + 28iT - 2.19e3T^{2} \) |
| 17 | \( 1 - 5iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 109T + 6.85e3T^{2} \) |
| 23 | \( 1 + 194iT - 1.21e4T^{2} \) |
| 29 | \( 1 - 32T + 2.43e4T^{2} \) |
| 31 | \( 1 + 10T + 2.97e4T^{2} \) |
| 37 | \( 1 + 198iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 117T + 6.89e4T^{2} \) |
| 43 | \( 1 - 388iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 68iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 18iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 392T + 2.05e5T^{2} \) |
| 61 | \( 1 + 710T + 2.26e5T^{2} \) |
| 67 | \( 1 - 253iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 612T + 3.57e5T^{2} \) |
| 73 | \( 1 - 549iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 414T + 4.93e5T^{2} \) |
| 83 | \( 1 + 121iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 81T + 7.04e5T^{2} \) |
| 97 | \( 1 + 1.50e3iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.79043075621965506230927611353, −9.987603211268030673018956314429, −9.399032736504924727903376186795, −8.407324895568196863055913111781, −7.15146438975704387116974152662, −5.99391113241072707724401966422, −4.67623808152103324851291646450, −4.05934519329582865181703773207, −3.18155000731107341229798617985, −0.812327148724330407414618151455,
1.18780125828249755626139227223, 2.07207612323681275808946182862, 3.40014802688379294242366373557, 5.34276772508495752974998814740, 6.19836486507960859299430145951, 6.96833061995850828091263918969, 7.87219773956820600970951985115, 8.951127617574279610919421900308, 9.434459075668451143500661635437, 11.38656219364851894048553306075