Properties

Label 2-20e2-5.4-c3-0-14
Degree 22
Conductor 400400
Sign 0.8940.447i0.894 - 0.447i
Analytic cond. 23.600723.6007
Root an. cond. 4.858064.85806
Motivic weight 33
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9i·3-s − 26i·7-s − 54·9-s + 59·11-s − 28i·13-s + 5i·17-s + 109·19-s + 234·21-s − 194i·23-s − 243i·27-s + 32·29-s − 10·31-s + 531i·33-s − 198i·37-s + 252·39-s + ⋯
L(s)  = 1  + 1.73i·3-s − 1.40i·7-s − 2·9-s + 1.61·11-s − 0.597i·13-s + 0.0713i·17-s + 1.31·19-s + 2.43·21-s − 1.75i·23-s − 1.73i·27-s + 0.204·29-s − 0.0579·31-s + 2.80i·33-s − 0.879i·37-s + 1.03·39-s + ⋯

Functional equation

Λ(s)=(400s/2ΓC(s)L(s)=((0.8940.447i)Λ(4s)\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(4-s) \end{aligned}
Λ(s)=(400s/2ΓC(s+3/2)L(s)=((0.8940.447i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 400400    =    24522^{4} \cdot 5^{2}
Sign: 0.8940.447i0.894 - 0.447i
Analytic conductor: 23.600723.6007
Root analytic conductor: 4.858064.85806
Motivic weight: 33
Rational: no
Arithmetic: yes
Character: χ400(49,)\chi_{400} (49, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 400, ( :3/2), 0.8940.447i)(2,\ 400,\ (\ :3/2),\ 0.894 - 0.447i)

Particular Values

L(2)L(2) \approx 1.9830639711.983063971
L(12)L(\frac12) \approx 1.9830639711.983063971
L(52)L(\frac{5}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
5 1 1
good3 19iT27T2 1 - 9iT - 27T^{2}
7 1+26iT343T2 1 + 26iT - 343T^{2}
11 159T+1.33e3T2 1 - 59T + 1.33e3T^{2}
13 1+28iT2.19e3T2 1 + 28iT - 2.19e3T^{2}
17 15iT4.91e3T2 1 - 5iT - 4.91e3T^{2}
19 1109T+6.85e3T2 1 - 109T + 6.85e3T^{2}
23 1+194iT1.21e4T2 1 + 194iT - 1.21e4T^{2}
29 132T+2.43e4T2 1 - 32T + 2.43e4T^{2}
31 1+10T+2.97e4T2 1 + 10T + 2.97e4T^{2}
37 1+198iT5.06e4T2 1 + 198iT - 5.06e4T^{2}
41 1117T+6.89e4T2 1 - 117T + 6.89e4T^{2}
43 1388iT7.95e4T2 1 - 388iT - 7.95e4T^{2}
47 168iT1.03e5T2 1 - 68iT - 1.03e5T^{2}
53 118iT1.48e5T2 1 - 18iT - 1.48e5T^{2}
59 1392T+2.05e5T2 1 - 392T + 2.05e5T^{2}
61 1+710T+2.26e5T2 1 + 710T + 2.26e5T^{2}
67 1253iT3.00e5T2 1 - 253iT - 3.00e5T^{2}
71 1612T+3.57e5T2 1 - 612T + 3.57e5T^{2}
73 1549iT3.89e5T2 1 - 549iT - 3.89e5T^{2}
79 1414T+4.93e5T2 1 - 414T + 4.93e5T^{2}
83 1+121iT5.71e5T2 1 + 121iT - 5.71e5T^{2}
89 181T+7.04e5T2 1 - 81T + 7.04e5T^{2}
97 1+1.50e3iT9.12e5T2 1 + 1.50e3iT - 9.12e5T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.79043075621965506230927611353, −9.987603211268030673018956314429, −9.399032736504924727903376186795, −8.407324895568196863055913111781, −7.15146438975704387116974152662, −5.99391113241072707724401966422, −4.67623808152103324851291646450, −4.05934519329582865181703773207, −3.18155000731107341229798617985, −0.812327148724330407414618151455, 1.18780125828249755626139227223, 2.07207612323681275808946182862, 3.40014802688379294242366373557, 5.34276772508495752974998814740, 6.19836486507960859299430145951, 6.96833061995850828091263918969, 7.87219773956820600970951985115, 8.951127617574279610919421900308, 9.434459075668451143500661635437, 11.38656219364851894048553306075

Graph of the ZZ-function along the critical line