L(s) = 1 | + (9 − 9i)3-s + (29 + 29i)7-s − 81i·9-s + 118·11-s + (−69 + 69i)13-s + (271 + 271i)17-s − 280i·19-s + 522·21-s + (269 − 269i)23-s + 680i·29-s − 202·31-s + (1.06e3 − 1.06e3i)33-s + (651 + 651i)37-s + 1.24e3i·39-s + 1.68e3·41-s + ⋯ |
L(s) = 1 | + (1 − i)3-s + (0.591 + 0.591i)7-s − i·9-s + 0.975·11-s + (−0.408 + 0.408i)13-s + (0.937 + 0.937i)17-s − 0.775i·19-s + 1.18·21-s + (0.508 − 0.508i)23-s + 0.808i·29-s − 0.210·31-s + (0.975 − 0.975i)33-s + (0.475 + 0.475i)37-s + 0.816i·39-s + 1.00·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.850 + 0.525i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.850 + 0.525i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(3.469299011\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.469299011\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (-9 + 9i)T - 81iT^{2} \) |
| 7 | \( 1 + (-29 - 29i)T + 2.40e3iT^{2} \) |
| 11 | \( 1 - 118T + 1.46e4T^{2} \) |
| 13 | \( 1 + (69 - 69i)T - 2.85e4iT^{2} \) |
| 17 | \( 1 + (-271 - 271i)T + 8.35e4iT^{2} \) |
| 19 | \( 1 + 280iT - 1.30e5T^{2} \) |
| 23 | \( 1 + (-269 + 269i)T - 2.79e5iT^{2} \) |
| 29 | \( 1 - 680iT - 7.07e5T^{2} \) |
| 31 | \( 1 + 202T + 9.23e5T^{2} \) |
| 37 | \( 1 + (-651 - 651i)T + 1.87e6iT^{2} \) |
| 41 | \( 1 - 1.68e3T + 2.82e6T^{2} \) |
| 43 | \( 1 + (-1.08e3 + 1.08e3i)T - 3.41e6iT^{2} \) |
| 47 | \( 1 + (-1.26e3 - 1.26e3i)T + 4.87e6iT^{2} \) |
| 53 | \( 1 + (-611 + 611i)T - 7.89e6iT^{2} \) |
| 59 | \( 1 + 1.16e3iT - 1.21e7T^{2} \) |
| 61 | \( 1 + 5.59e3T + 1.38e7T^{2} \) |
| 67 | \( 1 + (751 + 751i)T + 2.01e7iT^{2} \) |
| 71 | \( 1 + 6.44e3T + 2.54e7T^{2} \) |
| 73 | \( 1 + (-2.95e3 + 2.95e3i)T - 2.83e7iT^{2} \) |
| 79 | \( 1 + 1.05e4iT - 3.89e7T^{2} \) |
| 83 | \( 1 + (6.23e3 - 6.23e3i)T - 4.74e7iT^{2} \) |
| 89 | \( 1 + 1.44e4iT - 6.27e7T^{2} \) |
| 97 | \( 1 + (-7.31e3 - 7.31e3i)T + 8.85e7iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.61431770782391498920676357217, −9.214644585930375561708907635512, −8.758057545700998970755479694834, −7.79584679334781230671968869862, −7.02487302543674168628672378106, −5.98113514551885394701355450656, −4.59922336287925337853237962300, −3.21403600157058459026568554671, −2.10175949896515988789087562184, −1.16784728613533823293375304908,
1.09687482707370030536403764016, 2.72454516198388418838598037543, 3.79047159861015481394913400203, 4.53963381207783760655757274401, 5.76449284963179779151021792639, 7.33070941994476263076854480005, 7.991681759211568758212574433129, 9.130136390314551334347014665348, 9.672282478832618001564081507824, 10.51900781567236392780749389873