L(s) = 1 | + (−3 + 3i)3-s + (3 + 3i)7-s − 9i·9-s − 12·11-s + (−12 + 12i)13-s + (12 + 12i)17-s − 20i·19-s − 18·21-s + (−3 + 3i)23-s − 30i·29-s + 8·31-s + (36 − 36i)33-s + (−48 − 48i)37-s − 72i·39-s − 48·41-s + ⋯ |
L(s) = 1 | + (−1 + i)3-s + (0.428 + 0.428i)7-s − i·9-s − 1.09·11-s + (−0.923 + 0.923i)13-s + (0.705 + 0.705i)17-s − 1.05i·19-s − 0.857·21-s + (−0.130 + 0.130i)23-s − 1.03i·29-s + 0.258·31-s + (1.09 − 1.09i)33-s + (−1.29 − 1.29i)37-s − 1.84i·39-s − 1.17·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.525 + 0.850i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.525 + 0.850i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.0368657 - 0.0661224i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0368657 - 0.0661224i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (3 - 3i)T - 9iT^{2} \) |
| 7 | \( 1 + (-3 - 3i)T + 49iT^{2} \) |
| 11 | \( 1 + 12T + 121T^{2} \) |
| 13 | \( 1 + (12 - 12i)T - 169iT^{2} \) |
| 17 | \( 1 + (-12 - 12i)T + 289iT^{2} \) |
| 19 | \( 1 + 20iT - 361T^{2} \) |
| 23 | \( 1 + (3 - 3i)T - 529iT^{2} \) |
| 29 | \( 1 + 30iT - 841T^{2} \) |
| 31 | \( 1 - 8T + 961T^{2} \) |
| 37 | \( 1 + (48 + 48i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 + 48T + 1.68e3T^{2} \) |
| 43 | \( 1 + (-27 + 27i)T - 1.84e3iT^{2} \) |
| 47 | \( 1 + (27 + 27i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 + (12 - 12i)T - 2.80e3iT^{2} \) |
| 59 | \( 1 - 60iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 32T + 3.72e3T^{2} \) |
| 67 | \( 1 + (-3 - 3i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 - 48T + 5.04e3T^{2} \) |
| 73 | \( 1 + (12 - 12i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 + 40iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (93 - 93i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 - 30iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-12 - 12i)T + 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.62142622361110683964806927791, −10.66954490905987829071683939586, −10.07728979633254194466892040913, −9.142369465324382375503828472157, −8.010771623259069212493028474325, −6.85063052334381933426249970897, −5.53399983855826140076185399419, −5.05508906680154453918389401408, −3.99532403397664104925185186807, −2.30047464617709442875287968907,
0.03758768381088179741434813751, 1.43532873878352851012003742086, 3.05468756678898112400383089991, 4.96124048103725630652438136674, 5.52132821086858525552392891958, 6.73298509886092704353022166965, 7.60398465311913779668310134852, 8.162287671038947030996512546941, 9.890973262221863511903444818723, 10.53863784305595026601911289852