Properties

Label 2-20e2-20.19-c8-0-67
Degree $2$
Conductor $400$
Sign $0.447 + 0.894i$
Analytic cond. $162.951$
Root an. cond. $12.7652$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 141.·3-s + 2.55e3·7-s + 1.35e4·9-s − 1.91e4i·11-s − 2.77e4i·13-s − 5.03e4i·17-s + 1.08e5i·19-s + 3.62e5·21-s + 1.76e5·23-s + 9.99e5·27-s − 5.49e4·29-s − 1.17e6i·31-s − 2.72e6i·33-s − 7.93e5i·37-s − 3.93e6i·39-s + ⋯
L(s)  = 1  + 1.75·3-s + 1.06·7-s + 2.07·9-s − 1.30i·11-s − 0.970i·13-s − 0.603i·17-s + 0.833i·19-s + 1.86·21-s + 0.630·23-s + 1.88·27-s − 0.0777·29-s − 1.27i·31-s − 2.29i·33-s − 0.423i·37-s − 1.70i·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(400\)    =    \(2^{4} \cdot 5^{2}\)
Sign: $0.447 + 0.894i$
Analytic conductor: \(162.951\)
Root analytic conductor: \(12.7652\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{400} (399, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 400,\ (\ :4),\ 0.447 + 0.894i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(5.514887974\)
\(L(\frac12)\) \(\approx\) \(5.514887974\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3 \( 1 - 141.T + 6.56e3T^{2} \)
7 \( 1 - 2.55e3T + 5.76e6T^{2} \)
11 \( 1 + 1.91e4iT - 2.14e8T^{2} \)
13 \( 1 + 2.77e4iT - 8.15e8T^{2} \)
17 \( 1 + 5.03e4iT - 6.97e9T^{2} \)
19 \( 1 - 1.08e5iT - 1.69e10T^{2} \)
23 \( 1 - 1.76e5T + 7.83e10T^{2} \)
29 \( 1 + 5.49e4T + 5.00e11T^{2} \)
31 \( 1 + 1.17e6iT - 8.52e11T^{2} \)
37 \( 1 + 7.93e5iT - 3.51e12T^{2} \)
41 \( 1 + 7.55e4T + 7.98e12T^{2} \)
43 \( 1 - 4.99e5T + 1.16e13T^{2} \)
47 \( 1 + 2.86e6T + 2.38e13T^{2} \)
53 \( 1 - 1.11e7iT - 6.22e13T^{2} \)
59 \( 1 + 2.18e7iT - 1.46e14T^{2} \)
61 \( 1 + 2.38e7T + 1.91e14T^{2} \)
67 \( 1 + 7.49e6T + 4.06e14T^{2} \)
71 \( 1 - 1.00e7iT - 6.45e14T^{2} \)
73 \( 1 - 6.51e6iT - 8.06e14T^{2} \)
79 \( 1 + 4.87e7iT - 1.51e15T^{2} \)
83 \( 1 - 7.34e7T + 2.25e15T^{2} \)
89 \( 1 + 8.67e7T + 3.93e15T^{2} \)
97 \( 1 - 4.66e7iT - 7.83e15T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.498769228692426850413593538925, −8.701683759665250130686081471754, −7.979223995880821024852461376724, −7.54364833813824890209541440930, −5.96558133097148415106893228315, −4.76141323898142358574349146247, −3.59238234333993179173058917480, −2.88213788430674870616251246477, −1.82389826383589206468632698931, −0.75645753743227030909624193242, 1.47134187128469490552240493033, 1.98538958722260446203517998467, 3.06316528707642378707394422988, 4.27324799566951876978262750960, 4.85950059514481375167238780584, 6.80199263697689815738367338854, 7.45937443634912986964996528391, 8.375983371206537711576215360714, 9.018962977113045821729859495621, 9.800276077623401691165459217506

Graph of the $Z$-function along the critical line