Properties

Label 2-20e2-16.5-c1-0-3
Degree $2$
Conductor $400$
Sign $-0.659 - 0.751i$
Analytic cond. $3.19401$
Root an. cond. $1.78718$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.35 + 0.388i)2-s + (−1.03 + 1.03i)3-s + (1.69 − 1.05i)4-s + (1.01 − 1.81i)6-s − 1.49i·7-s + (−1.89 + 2.09i)8-s + 0.836i·9-s + (0.423 + 0.423i)11-s + (−0.666 + 2.86i)12-s + (−1.85 + 1.85i)13-s + (0.581 + 2.03i)14-s + (1.76 − 3.58i)16-s + 6.50·17-s + (−0.325 − 1.13i)18-s + (−1.75 + 1.75i)19-s + ⋯
L(s)  = 1  + (−0.961 + 0.274i)2-s + (−0.600 + 0.600i)3-s + (0.849 − 0.528i)4-s + (0.412 − 0.742i)6-s − 0.565i·7-s + (−0.671 + 0.741i)8-s + 0.278i·9-s + (0.127 + 0.127i)11-s + (−0.192 + 0.827i)12-s + (−0.515 + 0.515i)13-s + (0.155 + 0.543i)14-s + (0.441 − 0.897i)16-s + 1.57·17-s + (−0.0766 − 0.268i)18-s + (−0.403 + 0.403i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.659 - 0.751i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.659 - 0.751i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(400\)    =    \(2^{4} \cdot 5^{2}\)
Sign: $-0.659 - 0.751i$
Analytic conductor: \(3.19401\)
Root analytic conductor: \(1.78718\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{400} (101, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 400,\ (\ :1/2),\ -0.659 - 0.751i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.220290 + 0.486617i\)
\(L(\frac12)\) \(\approx\) \(0.220290 + 0.486617i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.35 - 0.388i)T \)
5 \( 1 \)
good3 \( 1 + (1.03 - 1.03i)T - 3iT^{2} \)
7 \( 1 + 1.49iT - 7T^{2} \)
11 \( 1 + (-0.423 - 0.423i)T + 11iT^{2} \)
13 \( 1 + (1.85 - 1.85i)T - 13iT^{2} \)
17 \( 1 - 6.50T + 17T^{2} \)
19 \( 1 + (1.75 - 1.75i)T - 19iT^{2} \)
23 \( 1 - 7.19iT - 23T^{2} \)
29 \( 1 + (6.57 - 6.57i)T - 29iT^{2} \)
31 \( 1 + 6.75T + 31T^{2} \)
37 \( 1 + (-1.95 - 1.95i)T + 37iT^{2} \)
41 \( 1 - 7.70iT - 41T^{2} \)
43 \( 1 + (6.13 + 6.13i)T + 43iT^{2} \)
47 \( 1 + 6.65T + 47T^{2} \)
53 \( 1 + (-5.29 - 5.29i)T + 53iT^{2} \)
59 \( 1 + (-5.91 - 5.91i)T + 59iT^{2} \)
61 \( 1 + (1.43 - 1.43i)T - 61iT^{2} \)
67 \( 1 + (6.35 - 6.35i)T - 67iT^{2} \)
71 \( 1 + 4.08iT - 71T^{2} \)
73 \( 1 + 2.43iT - 73T^{2} \)
79 \( 1 - 11.6T + 79T^{2} \)
83 \( 1 + (-2.81 + 2.81i)T - 83iT^{2} \)
89 \( 1 + 10.5iT - 89T^{2} \)
97 \( 1 - 18.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.36744511597187403227125723963, −10.46023873568513272239096764698, −9.917772124492428224680384523344, −9.066877689945634379444288933440, −7.74070993370286496489511955473, −7.22248211643206765321531074470, −5.84828349863299825903127700479, −5.09135135122778766382599684831, −3.57252710036631325410919019182, −1.64493655352917586716770609483, 0.51385466495621445167485822159, 2.15142644921478320233778440715, 3.54285731455568619659733043898, 5.47418649436495744672437414036, 6.33638202172799762557368630997, 7.31061706207017113247593563061, 8.158498550486829818048651288946, 9.193259624391857060335555630469, 9.991627143872284768464419119790, 10.99152899868549800072789670863

Graph of the $Z$-function along the critical line