Properties

Label 2-20e2-16.5-c1-0-0
Degree $2$
Conductor $400$
Sign $-0.577 - 0.816i$
Analytic cond. $3.19401$
Root an. cond. $1.78718$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.719 − 1.21i)2-s + (−1.66 + 1.66i)3-s + (−0.965 − 1.75i)4-s + (0.831 + 3.23i)6-s + 1.87i·7-s + (−2.82 − 0.0835i)8-s − 2.56i·9-s + (−3.29 − 3.29i)11-s + (4.53 + 1.31i)12-s + (−1.90 + 1.90i)13-s + (2.28 + 1.34i)14-s + (−2.13 + 3.38i)16-s − 2.57·17-s + (−3.12 − 1.84i)18-s + (−5.76 + 5.76i)19-s + ⋯
L(s)  = 1  + (0.508 − 0.861i)2-s + (−0.962 + 0.962i)3-s + (−0.482 − 0.875i)4-s + (0.339 + 1.31i)6-s + 0.708i·7-s + (−0.999 − 0.0295i)8-s − 0.854i·9-s + (−0.994 − 0.994i)11-s + (1.30 + 0.378i)12-s + (−0.527 + 0.527i)13-s + (0.609 + 0.360i)14-s + (−0.533 + 0.845i)16-s − 0.623·17-s + (−0.735 − 0.434i)18-s + (−1.32 + 1.32i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.577 - 0.816i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.577 - 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(400\)    =    \(2^{4} \cdot 5^{2}\)
Sign: $-0.577 - 0.816i$
Analytic conductor: \(3.19401\)
Root analytic conductor: \(1.78718\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{400} (101, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 400,\ (\ :1/2),\ -0.577 - 0.816i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.149478 + 0.288631i\)
\(L(\frac12)\) \(\approx\) \(0.149478 + 0.288631i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.719 + 1.21i)T \)
5 \( 1 \)
good3 \( 1 + (1.66 - 1.66i)T - 3iT^{2} \)
7 \( 1 - 1.87iT - 7T^{2} \)
11 \( 1 + (3.29 + 3.29i)T + 11iT^{2} \)
13 \( 1 + (1.90 - 1.90i)T - 13iT^{2} \)
17 \( 1 + 2.57T + 17T^{2} \)
19 \( 1 + (5.76 - 5.76i)T - 19iT^{2} \)
23 \( 1 - 7.58iT - 23T^{2} \)
29 \( 1 + (-6.45 + 6.45i)T - 29iT^{2} \)
31 \( 1 + 0.799T + 31T^{2} \)
37 \( 1 + (2.69 + 2.69i)T + 37iT^{2} \)
41 \( 1 - 0.946iT - 41T^{2} \)
43 \( 1 + (0.829 + 0.829i)T + 43iT^{2} \)
47 \( 1 + 1.52T + 47T^{2} \)
53 \( 1 + (6.97 + 6.97i)T + 53iT^{2} \)
59 \( 1 + (-6.84 - 6.84i)T + 59iT^{2} \)
61 \( 1 + (6.87 - 6.87i)T - 61iT^{2} \)
67 \( 1 + (-3.73 + 3.73i)T - 67iT^{2} \)
71 \( 1 + 9.34iT - 71T^{2} \)
73 \( 1 - 0.886iT - 73T^{2} \)
79 \( 1 - 3.07T + 79T^{2} \)
83 \( 1 + (-0.989 + 0.989i)T - 83iT^{2} \)
89 \( 1 - 10.0iT - 89T^{2} \)
97 \( 1 - 7.16T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.56005931544231653358255311170, −10.73122332331200310315777528051, −10.15790318937671452828148467770, −9.239820184433477162529677905401, −8.182236102276638195874121425999, −6.22733604098018534648038737577, −5.60358420662000016121263790412, −4.74414880102722770565877603880, −3.71579863359804070657718299467, −2.27030186678085329566053132776, 0.18905210829248421287678108721, 2.57090940656335871593130085736, 4.52255054817469611639993411011, 5.11047498309009773161986457257, 6.54472526960342308365685573349, 6.86064091030075635864797642603, 7.76302945311117717889705693402, 8.772538600121928956291574123347, 10.28416672572298235874538893207, 11.04846290520601843510343870271

Graph of the $Z$-function along the critical line