L(s) = 1 | + (1.56 + 1.59i)5-s + (1.76 − 2.42i)9-s + (0.552 + 3.48i)13-s + (2.87 + 1.46i)17-s + (−0.0759 + 4.99i)25-s + (2.51 + 0.816i)29-s + (11.3 − 1.80i)37-s + (−9.69 − 7.04i)41-s + (6.63 − 0.999i)45-s − 7i·49-s + (−8.83 + 4.50i)53-s + (−4.69 + 3.41i)61-s + (−4.68 + 6.35i)65-s + (−16.7 − 2.65i)73-s + (−2.78 − 8.55i)81-s + ⋯ |
L(s) = 1 | + (0.701 + 0.712i)5-s + (0.587 − 0.809i)9-s + (0.153 + 0.967i)13-s + (0.697 + 0.355i)17-s + (−0.0151 + 0.999i)25-s + (0.466 + 0.151i)29-s + (1.87 − 0.296i)37-s + (−1.51 − 1.09i)41-s + (0.988 − 0.148i)45-s − i·49-s + (−1.21 + 0.618i)53-s + (−0.601 + 0.436i)61-s + (−0.581 + 0.787i)65-s + (−1.96 − 0.310i)73-s + (−0.309 − 0.951i)81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.911 - 0.411i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.911 - 0.411i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.56848 + 0.338117i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.56848 + 0.338117i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-1.56 - 1.59i)T \) |
good | 3 | \( 1 + (-1.76 + 2.42i)T^{2} \) |
| 7 | \( 1 + 7iT^{2} \) |
| 11 | \( 1 + (-3.39 + 10.4i)T^{2} \) |
| 13 | \( 1 + (-0.552 - 3.48i)T + (-12.3 + 4.01i)T^{2} \) |
| 17 | \( 1 + (-2.87 - 1.46i)T + (9.99 + 13.7i)T^{2} \) |
| 19 | \( 1 + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + (-21.8 - 7.10i)T^{2} \) |
| 29 | \( 1 + (-2.51 - 0.816i)T + (23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (25.0 - 18.2i)T^{2} \) |
| 37 | \( 1 + (-11.3 + 1.80i)T + (35.1 - 11.4i)T^{2} \) |
| 41 | \( 1 + (9.69 + 7.04i)T + (12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 - 43iT^{2} \) |
| 47 | \( 1 + (27.6 - 38.0i)T^{2} \) |
| 53 | \( 1 + (8.83 - 4.50i)T + (31.1 - 42.8i)T^{2} \) |
| 59 | \( 1 + (18.2 + 56.1i)T^{2} \) |
| 61 | \( 1 + (4.69 - 3.41i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + (-39.3 - 54.2i)T^{2} \) |
| 71 | \( 1 + (57.4 + 41.7i)T^{2} \) |
| 73 | \( 1 + (16.7 + 2.65i)T + (69.4 + 22.5i)T^{2} \) |
| 79 | \( 1 + (-63.9 - 46.4i)T^{2} \) |
| 83 | \( 1 + (48.7 + 67.1i)T^{2} \) |
| 89 | \( 1 + (11.0 + 15.2i)T + (-27.5 + 84.6i)T^{2} \) |
| 97 | \( 1 + (2.30 + 4.53i)T + (-57.0 + 78.4i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.31846659876304025506936557229, −10.27820935762468373574552825494, −9.656419556897359043035691832673, −8.760048442304330771539653475765, −7.39860692192092177774708143310, −6.59429791978219530152749638918, −5.78621671371601767291501765341, −4.32403245741819042049033184615, −3.15076108754147102243304003941, −1.64174447385110877099949727392,
1.32498208675624670537217557117, 2.84144497269799488259998536440, 4.50983919418615539013356299270, 5.33200494608851954996447901833, 6.33298906173385501211470046378, 7.69574265544466145156000085377, 8.344221863687439031530016149718, 9.607677667182834172014289712764, 10.12061502948257167724389714767, 11.12461586266970147187250463007