L(s) = 1 | + (−0.198 − 0.343i)2-s + (−0.634 − 1.09i)3-s + (0.921 − 1.59i)4-s + (−0.220 − 0.382i)5-s + (−0.251 + 0.435i)6-s − 0.667·7-s − 1.52·8-s + (0.696 − 1.20i)9-s + (−0.0875 + 0.151i)10-s − 11-s − 2.33·12-s + (−0.802 + 1.38i)13-s + (0.132 + 0.229i)14-s + (−0.280 + 0.485i)15-s + (−1.54 − 2.66i)16-s + (−2.02 − 3.51i)17-s + ⋯ |
L(s) = 1 | + (−0.140 − 0.242i)2-s + (−0.366 − 0.634i)3-s + (0.460 − 0.797i)4-s + (−0.0988 − 0.171i)5-s + (−0.102 + 0.177i)6-s − 0.252·7-s − 0.538·8-s + (0.232 − 0.401i)9-s + (−0.0276 + 0.0479i)10-s − 0.301·11-s − 0.674·12-s + (−0.222 + 0.385i)13-s + (0.0353 + 0.0612i)14-s + (−0.0723 + 0.125i)15-s + (−0.385 − 0.667i)16-s + (−0.491 − 0.851i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 209 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.529 + 0.848i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 209 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.529 + 0.848i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.477752 - 0.861308i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.477752 - 0.861308i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 + T \) |
| 19 | \( 1 + (-2.81 - 3.32i)T \) |
good | 2 | \( 1 + (0.198 + 0.343i)T + (-1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (0.634 + 1.09i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (0.220 + 0.382i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + 0.667T + 7T^{2} \) |
| 13 | \( 1 + (0.802 - 1.38i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (2.02 + 3.51i)T + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (-0.187 + 0.324i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.28 + 2.21i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 9.01T + 31T^{2} \) |
| 37 | \( 1 - 7.24T + 37T^{2} \) |
| 41 | \( 1 + (-2.54 - 4.40i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-5.01 - 8.68i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (1.03 - 1.79i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-0.163 + 0.282i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-6.93 - 12.0i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.53 + 9.58i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.06 + 7.03i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (3.19 + 5.52i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-0.0659 - 0.114i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (0.134 + 0.233i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 5.76T + 83T^{2} \) |
| 89 | \( 1 + (0.492 - 0.853i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-1.68 - 2.92i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.91217749945376174185170216405, −11.30507024468356697933609623273, −10.02282096808592856093605306006, −9.409550956518242876091832490198, −7.88525147476114020666084240123, −6.71305987443738928247005272090, −6.05432106912669143953344634510, −4.64255758917027736631019846493, −2.65304923458753723921392827944, −0.961021465906418852558067755889,
2.68863653297730779824471600243, 4.04786716352010895999095385039, 5.35878531146718604610537979356, 6.70150726025516161285184985217, 7.63342420195934132399820151333, 8.659974857940747024945947922171, 9.882083471727343477847930693589, 10.84093633519639936730706022799, 11.56346293280217624556768830818, 12.72276655121431710033462652628