Properties

Label 2-209-19.6-c1-0-10
Degree $2$
Conductor $209$
Sign $0.999 + 0.000652i$
Analytic cond. $1.66887$
Root an. cond. $1.29184$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.673 − 0.565i)2-s + (1.87 + 0.684i)3-s + (−0.213 + 1.20i)4-s + (−0.286 − 1.62i)5-s + (1.65 − 0.601i)6-s + (0.0603 − 0.104i)7-s + (1.41 + 2.45i)8-s + (0.766 + 0.642i)9-s + (−1.11 − 0.934i)10-s + (−0.5 − 0.866i)11-s + (−1.22 + 2.12i)12-s + (4.29 − 1.56i)13-s + (−0.0184 − 0.104i)14-s + (0.573 − 3.25i)15-s + (0.0393 + 0.0143i)16-s + (−5.26 + 4.42i)17-s + ⋯
L(s)  = 1  + (0.476 − 0.399i)2-s + (1.08 + 0.394i)3-s + (−0.106 + 0.604i)4-s + (−0.128 − 0.727i)5-s + (0.674 − 0.245i)6-s + (0.0227 − 0.0394i)7-s + (0.501 + 0.868i)8-s + (0.255 + 0.214i)9-s + (−0.352 − 0.295i)10-s + (−0.150 − 0.261i)11-s + (−0.354 + 0.613i)12-s + (1.19 − 0.433i)13-s + (−0.00492 − 0.0279i)14-s + (0.148 − 0.840i)15-s + (0.00984 + 0.00358i)16-s + (−1.27 + 1.07i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 209 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.000652i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 209 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 + 0.000652i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(209\)    =    \(11 \cdot 19\)
Sign: $0.999 + 0.000652i$
Analytic conductor: \(1.66887\)
Root analytic conductor: \(1.29184\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{209} (177, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 209,\ (\ :1/2),\ 0.999 + 0.000652i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.93890 - 0.000632763i\)
\(L(\frac12)\) \(\approx\) \(1.93890 - 0.000632763i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 + (0.5 + 0.866i)T \)
19 \( 1 + (4.11 + 1.43i)T \)
good2 \( 1 + (-0.673 + 0.565i)T + (0.347 - 1.96i)T^{2} \)
3 \( 1 + (-1.87 - 0.684i)T + (2.29 + 1.92i)T^{2} \)
5 \( 1 + (0.286 + 1.62i)T + (-4.69 + 1.71i)T^{2} \)
7 \( 1 + (-0.0603 + 0.104i)T + (-3.5 - 6.06i)T^{2} \)
13 \( 1 + (-4.29 + 1.56i)T + (9.95 - 8.35i)T^{2} \)
17 \( 1 + (5.26 - 4.42i)T + (2.95 - 16.7i)T^{2} \)
23 \( 1 + (0.726 - 4.12i)T + (-21.6 - 7.86i)T^{2} \)
29 \( 1 + (5.94 + 4.98i)T + (5.03 + 28.5i)T^{2} \)
31 \( 1 + (-3.08 + 5.34i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + 1.46T + 37T^{2} \)
41 \( 1 + (2.09 + 0.761i)T + (31.4 + 26.3i)T^{2} \)
43 \( 1 + (1.75 + 9.95i)T + (-40.4 + 14.7i)T^{2} \)
47 \( 1 + (-5.54 - 4.65i)T + (8.16 + 46.2i)T^{2} \)
53 \( 1 + (2.11 - 12.0i)T + (-49.8 - 18.1i)T^{2} \)
59 \( 1 + (-3.17 + 2.66i)T + (10.2 - 58.1i)T^{2} \)
61 \( 1 + (1.54 - 8.78i)T + (-57.3 - 20.8i)T^{2} \)
67 \( 1 + (-3.63 - 3.04i)T + (11.6 + 65.9i)T^{2} \)
71 \( 1 + (0.0748 + 0.424i)T + (-66.7 + 24.2i)T^{2} \)
73 \( 1 + (-5.36 - 1.95i)T + (55.9 + 46.9i)T^{2} \)
79 \( 1 + (-2.77 - 1.01i)T + (60.5 + 50.7i)T^{2} \)
83 \( 1 + (1.54 - 2.67i)T + (-41.5 - 71.8i)T^{2} \)
89 \( 1 + (-9.90 + 3.60i)T + (68.1 - 57.2i)T^{2} \)
97 \( 1 + (-4.25 + 3.57i)T + (16.8 - 95.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.67109142004801675048858922325, −11.46649528996944611130023696892, −10.59762062026394389855375098034, −8.981704663711954175725009024895, −8.624652526637896777934071020209, −7.76888662950196332720724127822, −5.94971436822779247623289480951, −4.31837441935652600246917496099, −3.71663853604243917382458143156, −2.31583992224896671881796508911, 2.05971847318127599786915505869, 3.54493958368815681251807289848, 4.90307114254482023278700128650, 6.47756181148488834194127251103, 7.02809150292351022042164292422, 8.416991141444013332468348050477, 9.201198403649404301908345640743, 10.51660109599588438369678682999, 11.24828321907232106839711043765, 12.89670450424714304257160458531

Graph of the $Z$-function along the critical line