Properties

Label 2-209-1.1-c1-0-3
Degree $2$
Conductor $209$
Sign $1$
Analytic cond. $1.66887$
Root an. cond. $1.29184$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.18·2-s + 2.15·3-s + 2.77·4-s − 3.43·5-s − 4.71·6-s + 3.93·7-s − 1.69·8-s + 1.65·9-s + 7.49·10-s + 11-s + 5.98·12-s + 3.31·13-s − 8.60·14-s − 7.40·15-s − 1.84·16-s + 2.80·17-s − 3.61·18-s − 19-s − 9.52·20-s + 8.50·21-s − 2.18·22-s + 6.88·23-s − 3.65·24-s + 6.77·25-s − 7.23·26-s − 2.90·27-s + 10.9·28-s + ⋯
L(s)  = 1  − 1.54·2-s + 1.24·3-s + 1.38·4-s − 1.53·5-s − 1.92·6-s + 1.48·7-s − 0.598·8-s + 0.551·9-s + 2.37·10-s + 0.301·11-s + 1.72·12-s + 0.918·13-s − 2.30·14-s − 1.91·15-s − 0.462·16-s + 0.680·17-s − 0.852·18-s − 0.229·19-s − 2.12·20-s + 1.85·21-s − 0.465·22-s + 1.43·23-s − 0.746·24-s + 1.35·25-s − 1.41·26-s − 0.558·27-s + 2.06·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 209 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 209 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(209\)    =    \(11 \cdot 19\)
Sign: $1$
Analytic conductor: \(1.66887\)
Root analytic conductor: \(1.29184\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 209,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8128565125\)
\(L(\frac12)\) \(\approx\) \(0.8128565125\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 - T \)
19 \( 1 + T \)
good2 \( 1 + 2.18T + 2T^{2} \)
3 \( 1 - 2.15T + 3T^{2} \)
5 \( 1 + 3.43T + 5T^{2} \)
7 \( 1 - 3.93T + 7T^{2} \)
13 \( 1 - 3.31T + 13T^{2} \)
17 \( 1 - 2.80T + 17T^{2} \)
23 \( 1 - 6.88T + 23T^{2} \)
29 \( 1 - 5.67T + 29T^{2} \)
31 \( 1 - 2.51T + 31T^{2} \)
37 \( 1 + 6.39T + 37T^{2} \)
41 \( 1 - 0.560T + 41T^{2} \)
43 \( 1 + 9.40T + 43T^{2} \)
47 \( 1 + 12.1T + 47T^{2} \)
53 \( 1 - 5.68T + 53T^{2} \)
59 \( 1 - 4.35T + 59T^{2} \)
61 \( 1 + 3.56T + 61T^{2} \)
67 \( 1 + 9.95T + 67T^{2} \)
71 \( 1 + 11.4T + 71T^{2} \)
73 \( 1 + 8.95T + 73T^{2} \)
79 \( 1 - 8.49T + 79T^{2} \)
83 \( 1 + 5.21T + 83T^{2} \)
89 \( 1 + 7.28T + 89T^{2} \)
97 \( 1 - 10.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.82243334920565993602260658694, −11.29684397023825067564014669926, −10.32443070872693083708570317500, −8.856293721846946901344435522648, −8.434794875586729689328012238226, −7.913278551149302873129432667658, −7.04481354140097962126135527504, −4.60654322182126309154676167960, −3.24052470619799226856810859236, −1.41212230524311918316921922786, 1.41212230524311918316921922786, 3.24052470619799226856810859236, 4.60654322182126309154676167960, 7.04481354140097962126135527504, 7.913278551149302873129432667658, 8.434794875586729689328012238226, 8.856293721846946901344435522648, 10.32443070872693083708570317500, 11.29684397023825067564014669926, 11.82243334920565993602260658694

Graph of the $Z$-function along the critical line