L(s) = 1 | + (1 + 1.73i)3-s + 1.73i·5-s + (12 + 6.92i)7-s + (11.5 − 19.9i)9-s + (−12 + 6.92i)11-s + (45.5 − 11.2i)13-s + (−2.99 + 1.73i)15-s + (−58.5 + 101. i)17-s + (99 + 57.1i)19-s + 27.7i·21-s + (−39 − 67.5i)23-s + 122·25-s + 100·27-s + (70.5 + 122. i)29-s + 155. i·31-s + ⋯ |
L(s) = 1 | + (0.192 + 0.333i)3-s + 0.154i·5-s + (0.647 + 0.374i)7-s + (0.425 − 0.737i)9-s + (−0.328 + 0.189i)11-s + (0.970 − 0.240i)13-s + (−0.0516 + 0.0298i)15-s + (−0.834 + 1.44i)17-s + (1.19 + 0.690i)19-s + 0.287i·21-s + (−0.353 − 0.612i)23-s + 0.975·25-s + 0.712·27-s + (0.451 + 0.781i)29-s + 0.903i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.729 - 0.684i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.729 - 0.684i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.93660 + 0.766034i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.93660 + 0.766034i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 + (-45.5 + 11.2i)T \) |
good | 3 | \( 1 + (-1 - 1.73i)T + (-13.5 + 23.3i)T^{2} \) |
| 5 | \( 1 - 1.73iT - 125T^{2} \) |
| 7 | \( 1 + (-12 - 6.92i)T + (171.5 + 297. i)T^{2} \) |
| 11 | \( 1 + (12 - 6.92i)T + (665.5 - 1.15e3i)T^{2} \) |
| 17 | \( 1 + (58.5 - 101. i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-99 - 57.1i)T + (3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (39 + 67.5i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + (-70.5 - 122. i)T + (-1.21e4 + 2.11e4i)T^{2} \) |
| 31 | \( 1 - 155. iT - 2.97e4T^{2} \) |
| 37 | \( 1 + (124.5 - 71.8i)T + (2.53e4 - 4.38e4i)T^{2} \) |
| 41 | \( 1 + (-235.5 + 135. i)T + (3.44e4 - 5.96e4i)T^{2} \) |
| 43 | \( 1 + (-52 + 90.0i)T + (-3.97e4 - 6.88e4i)T^{2} \) |
| 47 | \( 1 - 301. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 93T + 1.48e5T^{2} \) |
| 59 | \( 1 + (-246 - 142. i)T + (1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (72.5 - 125. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-681 + 393. i)T + (1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 + (915 + 528. i)T + (1.78e5 + 3.09e5i)T^{2} \) |
| 73 | \( 1 + 458. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 1.27e3T + 4.93e5T^{2} \) |
| 83 | \( 1 + 789. iT - 5.71e5T^{2} \) |
| 89 | \( 1 + (846 - 488. i)T + (3.52e5 - 6.10e5i)T^{2} \) |
| 97 | \( 1 + (-174 - 100. i)T + (4.56e5 + 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.14674524305745409670587747741, −10.89733847083912375357617703906, −10.25109597878612378579809896786, −8.934129358721195011190726339742, −8.283761099719966662700360282901, −6.89956670413125727925317936518, −5.77872364940037632261564910583, −4.43817892699905125639082933181, −3.24767138576359516999663601721, −1.45029455959214390114118125828,
1.04631267028510669576583039583, 2.60138688882169316357273968957, 4.34095374656694777953470558090, 5.35594562269790954217406331365, 6.92495851557559707457824789907, 7.72567831698769910932769734207, 8.727149893366397299792231971338, 9.835781014522031616098884338933, 11.09267344104038232102105219269, 11.56885243740790785001834536092