Properties

Label 2-208-1.1-c9-0-50
Degree $2$
Conductor $208$
Sign $-1$
Analytic cond. $107.127$
Root an. cond. $10.3502$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 136.·3-s + 2.55e3·5-s − 9.39e3·7-s − 1.04e3·9-s − 4.40e4·11-s + 2.85e4·13-s + 3.48e5·15-s + 2.82e4·17-s − 2.73e5·19-s − 1.28e6·21-s + 1.12e6·23-s + 4.57e6·25-s − 2.82e6·27-s − 1.63e6·29-s − 6.65e6·31-s − 6.02e6·33-s − 2.40e7·35-s − 1.71e7·37-s + 3.89e6·39-s − 5.15e6·41-s + 1.97e7·43-s − 2.66e6·45-s − 4.82e7·47-s + 4.80e7·49-s + 3.86e6·51-s − 3.06e7·53-s − 1.12e8·55-s + ⋯
L(s)  = 1  + 0.973·3-s + 1.82·5-s − 1.47·7-s − 0.0529·9-s − 0.908·11-s + 0.277·13-s + 1.77·15-s + 0.0821·17-s − 0.482·19-s − 1.44·21-s + 0.841·23-s + 2.34·25-s − 1.02·27-s − 0.429·29-s − 1.29·31-s − 0.883·33-s − 2.70·35-s − 1.50·37-s + 0.269·39-s − 0.284·41-s + 0.879·43-s − 0.0967·45-s − 1.44·47-s + 1.18·49-s + 0.0799·51-s − 0.533·53-s − 1.65·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(208\)    =    \(2^{4} \cdot 13\)
Sign: $-1$
Analytic conductor: \(107.127\)
Root analytic conductor: \(10.3502\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 208,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 - 2.85e4T \)
good3 \( 1 - 136.T + 1.96e4T^{2} \)
5 \( 1 - 2.55e3T + 1.95e6T^{2} \)
7 \( 1 + 9.39e3T + 4.03e7T^{2} \)
11 \( 1 + 4.40e4T + 2.35e9T^{2} \)
17 \( 1 - 2.82e4T + 1.18e11T^{2} \)
19 \( 1 + 2.73e5T + 3.22e11T^{2} \)
23 \( 1 - 1.12e6T + 1.80e12T^{2} \)
29 \( 1 + 1.63e6T + 1.45e13T^{2} \)
31 \( 1 + 6.65e6T + 2.64e13T^{2} \)
37 \( 1 + 1.71e7T + 1.29e14T^{2} \)
41 \( 1 + 5.15e6T + 3.27e14T^{2} \)
43 \( 1 - 1.97e7T + 5.02e14T^{2} \)
47 \( 1 + 4.82e7T + 1.11e15T^{2} \)
53 \( 1 + 3.06e7T + 3.29e15T^{2} \)
59 \( 1 - 1.15e7T + 8.66e15T^{2} \)
61 \( 1 + 3.62e7T + 1.16e16T^{2} \)
67 \( 1 - 6.48e7T + 2.72e16T^{2} \)
71 \( 1 - 1.47e8T + 4.58e16T^{2} \)
73 \( 1 + 3.37e8T + 5.88e16T^{2} \)
79 \( 1 - 2.04e8T + 1.19e17T^{2} \)
83 \( 1 + 7.61e8T + 1.86e17T^{2} \)
89 \( 1 + 8.29e8T + 3.50e17T^{2} \)
97 \( 1 - 1.00e9T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.975014240838993116974709331626, −9.316472949769523351977604916039, −8.621735814681461120399683583853, −7.11327692946556429761837346023, −6.11085580338786371832332775452, −5.30524403864015557455964673795, −3.38678278814354224273486520182, −2.66579865352240529894891561831, −1.73102366334286269743387912110, 0, 1.73102366334286269743387912110, 2.66579865352240529894891561831, 3.38678278814354224273486520182, 5.30524403864015557455964673795, 6.11085580338786371832332775452, 7.11327692946556429761837346023, 8.621735814681461120399683583853, 9.316472949769523351977604916039, 9.975014240838993116974709331626

Graph of the $Z$-function along the critical line