Properties

Label 2-208-1.1-c9-0-46
Degree $2$
Conductor $208$
Sign $-1$
Analytic cond. $107.127$
Root an. cond. $10.3502$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 195.·3-s − 1.27e3·5-s + 2.27e3·7-s + 1.83e4·9-s + 7.17e3·11-s + 2.85e4·13-s − 2.49e5·15-s − 4.47e5·17-s + 5.28e5·19-s + 4.44e5·21-s − 2.24e6·23-s − 3.22e5·25-s − 2.54e5·27-s + 5.98e6·29-s − 1.69e5·31-s + 1.40e6·33-s − 2.90e6·35-s + 1.26e7·37-s + 5.57e6·39-s − 2.76e7·41-s + 2.27e7·43-s − 2.34e7·45-s − 5.32e7·47-s − 3.51e7·49-s − 8.73e7·51-s + 3.18e7·53-s − 9.16e6·55-s + ⋯
L(s)  = 1  + 1.39·3-s − 0.913·5-s + 0.358·7-s + 0.933·9-s + 0.147·11-s + 0.277·13-s − 1.27·15-s − 1.30·17-s + 0.930·19-s + 0.498·21-s − 1.67·23-s − 0.164·25-s − 0.0921·27-s + 1.57·29-s − 0.0329·31-s + 0.205·33-s − 0.327·35-s + 1.10·37-s + 0.385·39-s − 1.52·41-s + 1.01·43-s − 0.853·45-s − 1.59·47-s − 0.871·49-s − 1.80·51-s + 0.554·53-s − 0.135·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(208\)    =    \(2^{4} \cdot 13\)
Sign: $-1$
Analytic conductor: \(107.127\)
Root analytic conductor: \(10.3502\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 208,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 - 2.85e4T \)
good3 \( 1 - 195.T + 1.96e4T^{2} \)
5 \( 1 + 1.27e3T + 1.95e6T^{2} \)
7 \( 1 - 2.27e3T + 4.03e7T^{2} \)
11 \( 1 - 7.17e3T + 2.35e9T^{2} \)
17 \( 1 + 4.47e5T + 1.18e11T^{2} \)
19 \( 1 - 5.28e5T + 3.22e11T^{2} \)
23 \( 1 + 2.24e6T + 1.80e12T^{2} \)
29 \( 1 - 5.98e6T + 1.45e13T^{2} \)
31 \( 1 + 1.69e5T + 2.64e13T^{2} \)
37 \( 1 - 1.26e7T + 1.29e14T^{2} \)
41 \( 1 + 2.76e7T + 3.27e14T^{2} \)
43 \( 1 - 2.27e7T + 5.02e14T^{2} \)
47 \( 1 + 5.32e7T + 1.11e15T^{2} \)
53 \( 1 - 3.18e7T + 3.29e15T^{2} \)
59 \( 1 + 1.14e8T + 8.66e15T^{2} \)
61 \( 1 + 7.80e7T + 1.16e16T^{2} \)
67 \( 1 + 8.40e7T + 2.72e16T^{2} \)
71 \( 1 + 1.25e8T + 4.58e16T^{2} \)
73 \( 1 + 1.88e8T + 5.88e16T^{2} \)
79 \( 1 - 4.28e8T + 1.19e17T^{2} \)
83 \( 1 + 2.43e8T + 1.86e17T^{2} \)
89 \( 1 - 2.92e8T + 3.50e17T^{2} \)
97 \( 1 - 1.14e9T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.06758958209399633437277320002, −9.039245587651231746918105105230, −8.181938174080594591620501460676, −7.67709686310137734702313527364, −6.36462749398838407803608042422, −4.61478274580712744175322330520, −3.75829384685768785142009366180, −2.74414690373965449776635639408, −1.58865825813432691043483875373, 0, 1.58865825813432691043483875373, 2.74414690373965449776635639408, 3.75829384685768785142009366180, 4.61478274580712744175322330520, 6.36462749398838407803608042422, 7.67709686310137734702313527364, 8.181938174080594591620501460676, 9.039245587651231746918105105230, 10.06758958209399633437277320002

Graph of the $Z$-function along the critical line