Properties

Label 2-208-1.1-c5-0-7
Degree $2$
Conductor $208$
Sign $1$
Analytic cond. $33.3598$
Root an. cond. $5.77579$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 14·5-s + 170·7-s − 243·9-s + 250·11-s − 169·13-s + 1.06e3·17-s + 78·19-s − 1.57e3·23-s − 2.92e3·25-s + 2.57e3·29-s + 8.65e3·31-s − 2.38e3·35-s + 1.09e4·37-s + 1.05e3·41-s + 5.90e3·43-s + 3.40e3·45-s + 5.96e3·47-s + 1.20e4·49-s + 2.90e4·53-s − 3.50e3·55-s + 1.39e4·59-s − 3.28e4·61-s − 4.13e4·63-s + 2.36e3·65-s + 6.95e4·67-s + 5.05e4·71-s − 4.67e4·73-s + ⋯
L(s)  = 1  − 0.250·5-s + 1.31·7-s − 9-s + 0.622·11-s − 0.277·13-s + 0.891·17-s + 0.0495·19-s − 0.621·23-s − 0.937·25-s + 0.569·29-s + 1.61·31-s − 0.328·35-s + 1.31·37-s + 0.0975·41-s + 0.486·43-s + 0.250·45-s + 0.393·47-s + 0.719·49-s + 1.42·53-s − 0.156·55-s + 0.520·59-s − 1.13·61-s − 1.31·63-s + 0.0694·65-s + 1.89·67-s + 1.18·71-s − 1.02·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 208 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(208\)    =    \(2^{4} \cdot 13\)
Sign: $1$
Analytic conductor: \(33.3598\)
Root analytic conductor: \(5.77579\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 208,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(2.131516424\)
\(L(\frac12)\) \(\approx\) \(2.131516424\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 + p^{2} T \)
good3 \( 1 + p^{5} T^{2} \)
5 \( 1 + 14 T + p^{5} T^{2} \)
7 \( 1 - 170 T + p^{5} T^{2} \)
11 \( 1 - 250 T + p^{5} T^{2} \)
17 \( 1 - 1062 T + p^{5} T^{2} \)
19 \( 1 - 78 T + p^{5} T^{2} \)
23 \( 1 + 1576 T + p^{5} T^{2} \)
29 \( 1 - 2578 T + p^{5} T^{2} \)
31 \( 1 - 8654 T + p^{5} T^{2} \)
37 \( 1 - 10986 T + p^{5} T^{2} \)
41 \( 1 - 1050 T + p^{5} T^{2} \)
43 \( 1 - 5900 T + p^{5} T^{2} \)
47 \( 1 - 5962 T + p^{5} T^{2} \)
53 \( 1 - 29046 T + p^{5} T^{2} \)
59 \( 1 - 13922 T + p^{5} T^{2} \)
61 \( 1 + 32882 T + p^{5} T^{2} \)
67 \( 1 - 69566 T + p^{5} T^{2} \)
71 \( 1 - 50542 T + p^{5} T^{2} \)
73 \( 1 + 46750 T + p^{5} T^{2} \)
79 \( 1 - 19348 T + p^{5} T^{2} \)
83 \( 1 - 87438 T + p^{5} T^{2} \)
89 \( 1 - 94170 T + p^{5} T^{2} \)
97 \( 1 - 182786 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.78005978336519399690881714594, −10.67564864254429194657924871825, −9.503222991785454417137531095930, −8.291742098767639443296573555133, −7.77462338543806096189055495039, −6.24034028663459677983356653057, −5.15756180336914464906175060893, −3.98860997398042718137541868406, −2.44040998976634732323642933008, −0.927241864813892032394889783112, 0.927241864813892032394889783112, 2.44040998976634732323642933008, 3.98860997398042718137541868406, 5.15756180336914464906175060893, 6.24034028663459677983356653057, 7.77462338543806096189055495039, 8.291742098767639443296573555133, 9.503222991785454417137531095930, 10.67564864254429194657924871825, 11.78005978336519399690881714594

Graph of the $Z$-function along the critical line