Properties

Label 2-207-1.1-c3-0-7
Degree $2$
Conductor $207$
Sign $1$
Analytic cond. $12.2133$
Root an. cond. $3.49476$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.57·2-s + 4.77·4-s + 14.0·5-s + 0.770·7-s + 11.5·8-s − 50.3·10-s + 34.6·11-s − 15.6·13-s − 2.75·14-s − 79.4·16-s − 0.878·17-s − 23.7·19-s + 67.2·20-s − 123.·22-s − 23·23-s + 73.6·25-s + 55.8·26-s + 3.67·28-s + 208.·29-s + 28.7·31-s + 191.·32-s + 3.14·34-s + 10.8·35-s + 378.·37-s + 84.8·38-s + 162.·40-s − 85.2·41-s + ⋯
L(s)  = 1  − 1.26·2-s + 0.596·4-s + 1.26·5-s + 0.0415·7-s + 0.510·8-s − 1.59·10-s + 0.949·11-s − 0.333·13-s − 0.0525·14-s − 1.24·16-s − 0.0125·17-s − 0.286·19-s + 0.751·20-s − 1.20·22-s − 0.208·23-s + 0.589·25-s + 0.421·26-s + 0.0247·28-s + 1.33·29-s + 0.166·31-s + 1.05·32-s + 0.0158·34-s + 0.0524·35-s + 1.68·37-s + 0.362·38-s + 0.643·40-s − 0.324·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 207 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 207 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(207\)    =    \(3^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(12.2133\)
Root analytic conductor: \(3.49476\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 207,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.153529185\)
\(L(\frac12)\) \(\approx\) \(1.153529185\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
23 \( 1 + 23T \)
good2 \( 1 + 3.57T + 8T^{2} \)
5 \( 1 - 14.0T + 125T^{2} \)
7 \( 1 - 0.770T + 343T^{2} \)
11 \( 1 - 34.6T + 1.33e3T^{2} \)
13 \( 1 + 15.6T + 2.19e3T^{2} \)
17 \( 1 + 0.878T + 4.91e3T^{2} \)
19 \( 1 + 23.7T + 6.85e3T^{2} \)
29 \( 1 - 208.T + 2.43e4T^{2} \)
31 \( 1 - 28.7T + 2.97e4T^{2} \)
37 \( 1 - 378.T + 5.06e4T^{2} \)
41 \( 1 + 85.2T + 6.89e4T^{2} \)
43 \( 1 - 405.T + 7.95e4T^{2} \)
47 \( 1 - 302.T + 1.03e5T^{2} \)
53 \( 1 - 49.6T + 1.48e5T^{2} \)
59 \( 1 - 337.T + 2.05e5T^{2} \)
61 \( 1 - 439.T + 2.26e5T^{2} \)
67 \( 1 + 324.T + 3.00e5T^{2} \)
71 \( 1 - 88.8T + 3.57e5T^{2} \)
73 \( 1 - 224.T + 3.89e5T^{2} \)
79 \( 1 + 1.08e3T + 4.93e5T^{2} \)
83 \( 1 + 463.T + 5.71e5T^{2} \)
89 \( 1 - 1.29e3T + 7.04e5T^{2} \)
97 \( 1 - 195.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.68048434666792766345253463111, −10.56559308314759499569603336804, −9.778148034800161567456205761447, −9.180936234345484723334048166480, −8.205375619850013072385626404791, −6.95250112815833210794678515158, −5.95917566277379626665297029651, −4.45290685670348296308001579275, −2.32512030423992637989540071260, −1.05289156654566722191420736601, 1.05289156654566722191420736601, 2.32512030423992637989540071260, 4.45290685670348296308001579275, 5.95917566277379626665297029651, 6.95250112815833210794678515158, 8.205375619850013072385626404791, 9.180936234345484723334048166480, 9.778148034800161567456205761447, 10.56559308314759499569603336804, 11.68048434666792766345253463111

Graph of the $Z$-function along the critical line