Properties

Label 2-207-1.1-c3-0-6
Degree $2$
Conductor $207$
Sign $1$
Analytic cond. $12.2133$
Root an. cond. $3.49476$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.236·2-s − 7.94·4-s + 15.2·5-s − 20.6·7-s + 3.76·8-s − 3.59·10-s + 7.63·11-s + 55.0·13-s + 4.87·14-s + 62.6·16-s + 72.7·17-s − 96.7·19-s − 121.·20-s − 1.80·22-s + 23·23-s + 107.·25-s − 13.0·26-s + 164.·28-s + 228.·29-s + 336.·31-s − 44.9·32-s − 17.1·34-s − 314.·35-s + 213.·37-s + 22.8·38-s + 57.3·40-s + 325.·41-s + ⋯
L(s)  = 1  − 0.0834·2-s − 0.993·4-s + 1.36·5-s − 1.11·7-s + 0.166·8-s − 0.113·10-s + 0.209·11-s + 1.17·13-s + 0.0930·14-s + 0.979·16-s + 1.03·17-s − 1.16·19-s − 1.35·20-s − 0.0174·22-s + 0.208·23-s + 0.857·25-s − 0.0980·26-s + 1.10·28-s + 1.46·29-s + 1.94·31-s − 0.248·32-s − 0.0866·34-s − 1.51·35-s + 0.946·37-s + 0.0975·38-s + 0.226·40-s + 1.23·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 207 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 207 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(207\)    =    \(3^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(12.2133\)
Root analytic conductor: \(3.49476\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 207,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.602081856\)
\(L(\frac12)\) \(\approx\) \(1.602081856\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
23 \( 1 - 23T \)
good2 \( 1 + 0.236T + 8T^{2} \)
5 \( 1 - 15.2T + 125T^{2} \)
7 \( 1 + 20.6T + 343T^{2} \)
11 \( 1 - 7.63T + 1.33e3T^{2} \)
13 \( 1 - 55.0T + 2.19e3T^{2} \)
17 \( 1 - 72.7T + 4.91e3T^{2} \)
19 \( 1 + 96.7T + 6.85e3T^{2} \)
29 \( 1 - 228.T + 2.43e4T^{2} \)
31 \( 1 - 336.T + 2.97e4T^{2} \)
37 \( 1 - 213.T + 5.06e4T^{2} \)
41 \( 1 - 325.T + 6.89e4T^{2} \)
43 \( 1 + 297.T + 7.95e4T^{2} \)
47 \( 1 - 494.T + 1.03e5T^{2} \)
53 \( 1 + 220.T + 1.48e5T^{2} \)
59 \( 1 + 502.T + 2.05e5T^{2} \)
61 \( 1 + 69.3T + 2.26e5T^{2} \)
67 \( 1 + 425.T + 3.00e5T^{2} \)
71 \( 1 - 140.T + 3.57e5T^{2} \)
73 \( 1 + 273.T + 3.89e5T^{2} \)
79 \( 1 + 234.T + 4.93e5T^{2} \)
83 \( 1 - 233.T + 5.71e5T^{2} \)
89 \( 1 + 880.T + 7.04e5T^{2} \)
97 \( 1 - 20.4T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.26473734384424517465870120536, −10.53664978995765250686484920247, −9.907674480678983152732411617577, −9.147321816479382648611307364740, −8.227249603961742161210678483528, −6.40052265229256585779294249322, −5.88113510193971074688276552029, −4.40313437752440134788302497308, −2.97724174210892942791621363881, −1.04536357832079579036922131738, 1.04536357832079579036922131738, 2.97724174210892942791621363881, 4.40313437752440134788302497308, 5.88113510193971074688276552029, 6.40052265229256585779294249322, 8.227249603961742161210678483528, 9.147321816479382648611307364740, 9.907674480678983152732411617577, 10.53664978995765250686484920247, 12.26473734384424517465870120536

Graph of the $Z$-function along the critical line