Properties

Label 2-207-1.1-c3-0-19
Degree $2$
Conductor $207$
Sign $1$
Analytic cond. $12.2133$
Root an. cond. $3.49476$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5.06·2-s + 17.6·4-s + 2.15·5-s + 2.11·7-s + 48.7·8-s + 10.9·10-s + 33.1·11-s + 6.68·13-s + 10.7·14-s + 105.·16-s − 55.3·17-s + 77.1·19-s + 38.0·20-s + 167.·22-s − 23·23-s − 120.·25-s + 33.8·26-s + 37.2·28-s − 14.9·29-s − 40.4·31-s + 146.·32-s − 280.·34-s + 4.55·35-s − 223.·37-s + 390.·38-s + 105.·40-s + 29.5·41-s + ⋯
L(s)  = 1  + 1.79·2-s + 2.20·4-s + 0.192·5-s + 0.114·7-s + 2.15·8-s + 0.345·10-s + 0.908·11-s + 0.142·13-s + 0.204·14-s + 1.65·16-s − 0.789·17-s + 0.931·19-s + 0.425·20-s + 1.62·22-s − 0.208·23-s − 0.962·25-s + 0.255·26-s + 0.251·28-s − 0.0956·29-s − 0.234·31-s + 0.807·32-s − 1.41·34-s + 0.0220·35-s − 0.992·37-s + 1.66·38-s + 0.415·40-s + 0.112·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 207 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 207 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(207\)    =    \(3^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(12.2133\)
Root analytic conductor: \(3.49476\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 207,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(5.229507399\)
\(L(\frac12)\) \(\approx\) \(5.229507399\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
23 \( 1 + 23T \)
good2 \( 1 - 5.06T + 8T^{2} \)
5 \( 1 - 2.15T + 125T^{2} \)
7 \( 1 - 2.11T + 343T^{2} \)
11 \( 1 - 33.1T + 1.33e3T^{2} \)
13 \( 1 - 6.68T + 2.19e3T^{2} \)
17 \( 1 + 55.3T + 4.91e3T^{2} \)
19 \( 1 - 77.1T + 6.85e3T^{2} \)
29 \( 1 + 14.9T + 2.43e4T^{2} \)
31 \( 1 + 40.4T + 2.97e4T^{2} \)
37 \( 1 + 223.T + 5.06e4T^{2} \)
41 \( 1 - 29.5T + 6.89e4T^{2} \)
43 \( 1 + 430.T + 7.95e4T^{2} \)
47 \( 1 - 498.T + 1.03e5T^{2} \)
53 \( 1 - 485.T + 1.48e5T^{2} \)
59 \( 1 + 425.T + 2.05e5T^{2} \)
61 \( 1 - 185.T + 2.26e5T^{2} \)
67 \( 1 - 20.9T + 3.00e5T^{2} \)
71 \( 1 + 839.T + 3.57e5T^{2} \)
73 \( 1 + 830.T + 3.89e5T^{2} \)
79 \( 1 + 392.T + 4.93e5T^{2} \)
83 \( 1 - 932.T + 5.71e5T^{2} \)
89 \( 1 - 411.T + 7.04e5T^{2} \)
97 \( 1 - 1.60e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.94957479153784496646848208992, −11.55073960858710209949796954104, −10.34292220396028127913267073183, −8.982750873550258390363408012058, −7.40450142604396386984681508169, −6.43566669833059959505477431725, −5.50319483670083435157510524295, −4.36834867687477614999862163444, −3.35754746972964286531860743478, −1.85991163886242491369445042400, 1.85991163886242491369445042400, 3.35754746972964286531860743478, 4.36834867687477614999862163444, 5.50319483670083435157510524295, 6.43566669833059959505477431725, 7.40450142604396386984681508169, 8.982750873550258390363408012058, 10.34292220396028127913267073183, 11.55073960858710209949796954104, 11.94957479153784496646848208992

Graph of the $Z$-function along the critical line