Properties

Label 2-207-1.1-c3-0-14
Degree $2$
Conductor $207$
Sign $1$
Analytic cond. $12.2133$
Root an. cond. $3.49476$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.23·2-s + 9.94·4-s + 10.7·5-s + 10.6·7-s + 8.23·8-s + 45.5·10-s + 52.3·11-s − 79.0·13-s + 45.1·14-s − 44.6·16-s + 77.2·17-s + 50.7·19-s + 107.·20-s + 221.·22-s + 23·23-s − 9.13·25-s − 334.·26-s + 105.·28-s − 12.7·29-s − 12.4·31-s − 255.·32-s + 327.·34-s + 114.·35-s − 73.1·37-s + 215.·38-s + 88.6·40-s + 38.8·41-s + ⋯
L(s)  = 1  + 1.49·2-s + 1.24·4-s + 0.962·5-s + 0.575·7-s + 0.363·8-s + 1.44·10-s + 1.43·11-s − 1.68·13-s + 0.861·14-s − 0.697·16-s + 1.10·17-s + 0.613·19-s + 1.19·20-s + 2.14·22-s + 0.208·23-s − 0.0731·25-s − 2.52·26-s + 0.714·28-s − 0.0816·29-s − 0.0719·31-s − 1.40·32-s + 1.65·34-s + 0.553·35-s − 0.324·37-s + 0.918·38-s + 0.350·40-s + 0.148·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 207 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 207 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(207\)    =    \(3^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(12.2133\)
Root analytic conductor: \(3.49476\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 207,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(4.626798192\)
\(L(\frac12)\) \(\approx\) \(4.626798192\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
23 \( 1 - 23T \)
good2 \( 1 - 4.23T + 8T^{2} \)
5 \( 1 - 10.7T + 125T^{2} \)
7 \( 1 - 10.6T + 343T^{2} \)
11 \( 1 - 52.3T + 1.33e3T^{2} \)
13 \( 1 + 79.0T + 2.19e3T^{2} \)
17 \( 1 - 77.2T + 4.91e3T^{2} \)
19 \( 1 - 50.7T + 6.85e3T^{2} \)
29 \( 1 + 12.7T + 2.43e4T^{2} \)
31 \( 1 + 12.4T + 2.97e4T^{2} \)
37 \( 1 + 73.1T + 5.06e4T^{2} \)
41 \( 1 - 38.8T + 6.89e4T^{2} \)
43 \( 1 - 171.T + 7.95e4T^{2} \)
47 \( 1 + 614.T + 1.03e5T^{2} \)
53 \( 1 + 269.T + 1.48e5T^{2} \)
59 \( 1 - 534.T + 2.05e5T^{2} \)
61 \( 1 + 838.T + 2.26e5T^{2} \)
67 \( 1 + 448.T + 3.00e5T^{2} \)
71 \( 1 + 628.T + 3.57e5T^{2} \)
73 \( 1 - 925.T + 3.89e5T^{2} \)
79 \( 1 + 963.T + 4.93e5T^{2} \)
83 \( 1 + 133.T + 5.71e5T^{2} \)
89 \( 1 - 778.T + 7.04e5T^{2} \)
97 \( 1 - 1.60e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.08855167355999269154710049814, −11.49699498622575203397551005523, −9.978863069529243581178880349723, −9.219629653375036728487758313520, −7.52161288799196957430089060441, −6.40677883827513762853864538916, −5.42315269279550347711199280603, −4.58646275519706348734053763090, −3.18733937681174670635732516026, −1.76792535509813731041122588356, 1.76792535509813731041122588356, 3.18733937681174670635732516026, 4.58646275519706348734053763090, 5.42315269279550347711199280603, 6.40677883827513762853864538916, 7.52161288799196957430089060441, 9.219629653375036728487758313520, 9.978863069529243581178880349723, 11.49699498622575203397551005523, 12.08855167355999269154710049814

Graph of the $Z$-function along the critical line