Properties

Label 2-207-1.1-c1-0-5
Degree $2$
Conductor $207$
Sign $1$
Analytic cond. $1.65290$
Root an. cond. $1.28565$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.23·2-s + 3.00·4-s − 1.23·5-s + 3.23·7-s + 2.23·8-s − 2.76·10-s − 4·11-s − 4.47·13-s + 7.23·14-s − 0.999·16-s + 2.76·17-s + 7.23·19-s − 3.70·20-s − 8.94·22-s − 23-s − 3.47·25-s − 10.0·26-s + 9.70·28-s − 4.47·29-s − 6.47·31-s − 6.70·32-s + 6.18·34-s − 4.00·35-s + 4.47·37-s + 16.1·38-s − 2.76·40-s + 10.9·41-s + ⋯
L(s)  = 1  + 1.58·2-s + 1.50·4-s − 0.552·5-s + 1.22·7-s + 0.790·8-s − 0.874·10-s − 1.20·11-s − 1.24·13-s + 1.93·14-s − 0.249·16-s + 0.670·17-s + 1.66·19-s − 0.829·20-s − 1.90·22-s − 0.208·23-s − 0.694·25-s − 1.96·26-s + 1.83·28-s − 0.830·29-s − 1.16·31-s − 1.18·32-s + 1.05·34-s − 0.676·35-s + 0.735·37-s + 2.62·38-s − 0.437·40-s + 1.70·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 207 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 207 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(207\)    =    \(3^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(1.65290\)
Root analytic conductor: \(1.28565\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 207,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.479274107\)
\(L(\frac12)\) \(\approx\) \(2.479274107\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
23 \( 1 + T \)
good2 \( 1 - 2.23T + 2T^{2} \)
5 \( 1 + 1.23T + 5T^{2} \)
7 \( 1 - 3.23T + 7T^{2} \)
11 \( 1 + 4T + 11T^{2} \)
13 \( 1 + 4.47T + 13T^{2} \)
17 \( 1 - 2.76T + 17T^{2} \)
19 \( 1 - 7.23T + 19T^{2} \)
29 \( 1 + 4.47T + 29T^{2} \)
31 \( 1 + 6.47T + 31T^{2} \)
37 \( 1 - 4.47T + 37T^{2} \)
41 \( 1 - 10.9T + 41T^{2} \)
43 \( 1 + 5.70T + 43T^{2} \)
47 \( 1 - 4T + 47T^{2} \)
53 \( 1 - 5.23T + 53T^{2} \)
59 \( 1 - 4.94T + 59T^{2} \)
61 \( 1 - 4.47T + 61T^{2} \)
67 \( 1 - 0.763T + 67T^{2} \)
71 \( 1 - 8T + 71T^{2} \)
73 \( 1 - 6.94T + 73T^{2} \)
79 \( 1 - 9.70T + 79T^{2} \)
83 \( 1 + 4T + 83T^{2} \)
89 \( 1 - 1.23T + 89T^{2} \)
97 \( 1 - 8.47T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.41635686132260183619352698019, −11.70634698476176216317390232283, −10.98870331069602887125074447346, −9.614593930167483088583521843275, −7.83146599695803646210358425141, −7.40368496525374545864537169215, −5.50476019734614739065412695050, −5.06796354574754375643604479623, −3.82089084173819696868734908335, −2.43350663926757041321316798946, 2.43350663926757041321316798946, 3.82089084173819696868734908335, 5.06796354574754375643604479623, 5.50476019734614739065412695050, 7.40368496525374545864537169215, 7.83146599695803646210358425141, 9.614593930167483088583521843275, 10.98870331069602887125074447346, 11.70634698476176216317390232283, 12.41635686132260183619352698019

Graph of the $Z$-function along the critical line