Properties

Label 2-206400-1.1-c1-0-111
Degree $2$
Conductor $206400$
Sign $1$
Analytic cond. $1648.11$
Root an. cond. $40.5969$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 7-s + 9-s − 11-s + 7·13-s + 2·17-s − 5·19-s − 21-s + 8·23-s + 27-s − 3·29-s − 8·31-s − 33-s − 4·37-s + 7·39-s + 4·41-s + 43-s + 7·47-s − 6·49-s + 2·51-s + 4·53-s − 5·57-s + 12·59-s − 63-s + 10·67-s + 8·69-s + 6·71-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.377·7-s + 1/3·9-s − 0.301·11-s + 1.94·13-s + 0.485·17-s − 1.14·19-s − 0.218·21-s + 1.66·23-s + 0.192·27-s − 0.557·29-s − 1.43·31-s − 0.174·33-s − 0.657·37-s + 1.12·39-s + 0.624·41-s + 0.152·43-s + 1.02·47-s − 6/7·49-s + 0.280·51-s + 0.549·53-s − 0.662·57-s + 1.56·59-s − 0.125·63-s + 1.22·67-s + 0.963·69-s + 0.712·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 206400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 206400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(206400\)    =    \(2^{6} \cdot 3 \cdot 5^{2} \cdot 43\)
Sign: $1$
Analytic conductor: \(1648.11\)
Root analytic conductor: \(40.5969\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 206400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.081888952\)
\(L(\frac12)\) \(\approx\) \(4.081888952\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
43 \( 1 - T \)
good7 \( 1 + T + p T^{2} \)
11 \( 1 + T + p T^{2} \)
13 \( 1 - 7 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 + 5 T + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
29 \( 1 + 3 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 + 4 T + p T^{2} \)
41 \( 1 - 4 T + p T^{2} \)
47 \( 1 - 7 T + p T^{2} \)
53 \( 1 - 4 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 + p T^{2} \)
67 \( 1 - 10 T + p T^{2} \)
71 \( 1 - 6 T + p T^{2} \)
73 \( 1 - 14 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 - 9 T + p T^{2} \)
89 \( 1 - 2 T + p T^{2} \)
97 \( 1 - 7 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.98008159551254, −12.79698548275639, −12.30258335995161, −11.43919753650820, −11.09042492762960, −10.71235411514799, −10.36774174172504, −9.551155078813026, −9.240162688220213, −8.700095740025636, −8.466430156778258, −7.845007613416220, −7.333156376060795, −6.706549338768253, −6.458859986541239, −5.679013650038046, −5.374274683692659, −4.679884150846529, −3.864807576289211, −3.643458843944840, −3.221849416078833, −2.356906749916280, −1.957748241372283, −1.111359457006167, −0.6053561789853568, 0.6053561789853568, 1.111359457006167, 1.957748241372283, 2.356906749916280, 3.221849416078833, 3.643458843944840, 3.864807576289211, 4.679884150846529, 5.374274683692659, 5.679013650038046, 6.458859986541239, 6.706549338768253, 7.333156376060795, 7.845007613416220, 8.466430156778258, 8.700095740025636, 9.240162688220213, 9.551155078813026, 10.36774174172504, 10.71235411514799, 11.09042492762960, 11.43919753650820, 12.30258335995161, 12.79698548275639, 12.98008159551254

Graph of the $Z$-function along the critical line