Properties

Label 2-206400-1.1-c1-0-1
Degree $2$
Conductor $206400$
Sign $1$
Analytic cond. $1648.11$
Root an. cond. $40.5969$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 9-s + 4·11-s − 6·13-s + 6·17-s − 8·19-s − 4·23-s − 27-s − 10·29-s − 4·33-s − 6·37-s + 6·39-s − 6·41-s − 43-s + 12·47-s − 7·49-s − 6·51-s − 6·53-s + 8·57-s − 4·59-s + 6·61-s − 4·67-s + 4·69-s − 8·71-s + 10·73-s + 8·79-s + 81-s + ⋯
L(s)  = 1  − 0.577·3-s + 1/3·9-s + 1.20·11-s − 1.66·13-s + 1.45·17-s − 1.83·19-s − 0.834·23-s − 0.192·27-s − 1.85·29-s − 0.696·33-s − 0.986·37-s + 0.960·39-s − 0.937·41-s − 0.152·43-s + 1.75·47-s − 49-s − 0.840·51-s − 0.824·53-s + 1.05·57-s − 0.520·59-s + 0.768·61-s − 0.488·67-s + 0.481·69-s − 0.949·71-s + 1.17·73-s + 0.900·79-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 206400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 206400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(206400\)    =    \(2^{6} \cdot 3 \cdot 5^{2} \cdot 43\)
Sign: $1$
Analytic conductor: \(1648.11\)
Root analytic conductor: \(40.5969\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 206400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3762385296\)
\(L(\frac12)\) \(\approx\) \(0.3762385296\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
43 \( 1 + T \)
good7 \( 1 + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
13 \( 1 + 6 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 + 8 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 + 10 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 + 6 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
47 \( 1 - 12 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + 4 T + p T^{2} \)
61 \( 1 - 6 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + 8 T + p T^{2} \)
73 \( 1 - 10 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 - 2 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.74087156455373, −12.51595784508110, −12.10090476618339, −11.77169992021944, −11.23745880576284, −10.56493247598951, −10.33910897880974, −9.713485091305128, −9.372916241415273, −8.913406553672329, −8.170051874410822, −7.767472587094167, −7.230375365064980, −6.790892436842508, −6.259647958078241, −5.817007518361335, −5.199737213065827, −4.834373719270822, −4.069606734064936, −3.800549551048469, −3.138405262679106, −2.188448540362457, −1.899858188340385, −1.175302063380381, −0.1820642115907189, 0.1820642115907189, 1.175302063380381, 1.899858188340385, 2.188448540362457, 3.138405262679106, 3.800549551048469, 4.069606734064936, 4.834373719270822, 5.199737213065827, 5.817007518361335, 6.259647958078241, 6.790892436842508, 7.230375365064980, 7.767472587094167, 8.170051874410822, 8.913406553672329, 9.372916241415273, 9.713485091305128, 10.33910897880974, 10.56493247598951, 11.23745880576284, 11.77169992021944, 12.10090476618339, 12.51595784508110, 12.74087156455373

Graph of the $Z$-function along the critical line