Properties

Label 2-2034-1.1-c1-0-8
Degree $2$
Conductor $2034$
Sign $1$
Analytic cond. $16.2415$
Root an. cond. $4.03008$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 1.58·5-s + 3.85·7-s − 8-s + 1.58·10-s − 6.27·11-s + 1.11·13-s − 3.85·14-s + 16-s + 1.85·17-s + 0.102·19-s − 1.58·20-s + 6.27·22-s + 2.92·23-s − 2.48·25-s − 1.11·26-s + 3.85·28-s + 6.84·29-s + 1.61·31-s − 32-s − 1.85·34-s − 6.10·35-s − 9.34·37-s − 0.102·38-s + 1.58·40-s + 4.37·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s − 0.708·5-s + 1.45·7-s − 0.353·8-s + 0.501·10-s − 1.89·11-s + 0.308·13-s − 1.02·14-s + 0.250·16-s + 0.448·17-s + 0.0234·19-s − 0.354·20-s + 1.33·22-s + 0.608·23-s − 0.497·25-s − 0.218·26-s + 0.727·28-s + 1.27·29-s + 0.290·31-s − 0.176·32-s − 0.317·34-s − 1.03·35-s − 1.53·37-s − 0.0165·38-s + 0.250·40-s + 0.683·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2034 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2034 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2034\)    =    \(2 \cdot 3^{2} \cdot 113\)
Sign: $1$
Analytic conductor: \(16.2415\)
Root analytic conductor: \(4.03008\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2034,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.132273928\)
\(L(\frac12)\) \(\approx\) \(1.132273928\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
113 \( 1 - T \)
good5 \( 1 + 1.58T + 5T^{2} \)
7 \( 1 - 3.85T + 7T^{2} \)
11 \( 1 + 6.27T + 11T^{2} \)
13 \( 1 - 1.11T + 13T^{2} \)
17 \( 1 - 1.85T + 17T^{2} \)
19 \( 1 - 0.102T + 19T^{2} \)
23 \( 1 - 2.92T + 23T^{2} \)
29 \( 1 - 6.84T + 29T^{2} \)
31 \( 1 - 1.61T + 31T^{2} \)
37 \( 1 + 9.34T + 37T^{2} \)
41 \( 1 - 4.37T + 41T^{2} \)
43 \( 1 - 8.01T + 43T^{2} \)
47 \( 1 - 11.0T + 47T^{2} \)
53 \( 1 - 7.95T + 53T^{2} \)
59 \( 1 + 4.58T + 59T^{2} \)
61 \( 1 + 8.43T + 61T^{2} \)
67 \( 1 - 1.02T + 67T^{2} \)
71 \( 1 + 4.38T + 71T^{2} \)
73 \( 1 - 7.21T + 73T^{2} \)
79 \( 1 + 10.9T + 79T^{2} \)
83 \( 1 - 9.74T + 83T^{2} \)
89 \( 1 + 7.48T + 89T^{2} \)
97 \( 1 - 19.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.815709482593205414795682309893, −8.346735189921634452185872383566, −7.60906683269431550626185147997, −7.34542134674310262756559492411, −5.89287329297084624584372047266, −5.13679044515623003316498035867, −4.34417755855592274551879034214, −3.05929986827262326701318348278, −2.10504923270919225009492562128, −0.78765118015390625344637702604, 0.78765118015390625344637702604, 2.10504923270919225009492562128, 3.05929986827262326701318348278, 4.34417755855592274551879034214, 5.13679044515623003316498035867, 5.89287329297084624584372047266, 7.34542134674310262756559492411, 7.60906683269431550626185147997, 8.346735189921634452185872383566, 8.815709482593205414795682309893

Graph of the $Z$-function along the critical line