L(s) = 1 | + 3·3-s − 2i·5-s + 32i·7-s + 9·9-s + 68i·11-s − 6i·15-s + 14·17-s + 4i·19-s + 96i·21-s − 72·23-s + 121·25-s + 27·27-s + 102·29-s − 136i·31-s + 204i·33-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 0.178i·5-s + 1.72i·7-s + 0.333·9-s + 1.86i·11-s − 0.103i·15-s + 0.199·17-s + 0.0482i·19-s + 0.997i·21-s − 0.652·23-s + 0.967·25-s + 0.192·27-s + 0.653·29-s − 0.787i·31-s + 1.07i·33-s + ⋯ |
Λ(s)=(=(2028s/2ΓC(s)L(s)(−0.832−0.554i)Λ(4−s)
Λ(s)=(=(2028s/2ΓC(s+3/2)L(s)(−0.832−0.554i)Λ(1−s)
Degree: |
2 |
Conductor: |
2028
= 22⋅3⋅132
|
Sign: |
−0.832−0.554i
|
Analytic conductor: |
119.655 |
Root analytic conductor: |
10.9387 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2028(337,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2028, ( :3/2), −0.832−0.554i)
|
Particular Values
L(2) |
≈ |
2.307576987 |
L(21) |
≈ |
2.307576987 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−3T |
| 13 | 1 |
good | 5 | 1+2iT−125T2 |
| 7 | 1−32iT−343T2 |
| 11 | 1−68iT−1.33e3T2 |
| 17 | 1−14T+4.91e3T2 |
| 19 | 1−4iT−6.85e3T2 |
| 23 | 1+72T+1.21e4T2 |
| 29 | 1−102T+2.43e4T2 |
| 31 | 1+136iT−2.97e4T2 |
| 37 | 1−386iT−5.06e4T2 |
| 41 | 1−250iT−6.89e4T2 |
| 43 | 1−140T+7.95e4T2 |
| 47 | 1−296iT−1.03e5T2 |
| 53 | 1−526T+1.48e5T2 |
| 59 | 1+332iT−2.05e5T2 |
| 61 | 1+410T+2.26e5T2 |
| 67 | 1−596iT−3.00e5T2 |
| 71 | 1+880iT−3.57e5T2 |
| 73 | 1+506iT−3.89e5T2 |
| 79 | 1+640T+4.93e5T2 |
| 83 | 1−1.38e3iT−5.71e5T2 |
| 89 | 1+1.45e3iT−7.04e5T2 |
| 97 | 1+446iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.124274325822656895203433760919, −8.374353947812951283536540023160, −7.71823997685475186750354013703, −6.75685636226184684741923616383, −5.96066261953728101922559712026, −4.94688989206704124506213762350, −4.39768572170333406033630841599, −2.99794688425899016482321795487, −2.33425926609340014814110981864, −1.48225111171507079653476834222,
0.44891388009551541113233175732, 1.16898147348237885581706773418, 2.64924450538313261881176546796, 3.60408325007648737536345349268, 4.02445682722962573778310429542, 5.23672851518401069917398648869, 6.22415003086038462786123877335, 7.06620956274989615360234939962, 7.64628119322417793580509004451, 8.519926980992739635935754671017