Properties

Label 2-2023-1.1-c3-0-85
Degree $2$
Conductor $2023$
Sign $1$
Analytic cond. $119.360$
Root an. cond. $10.9252$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·2-s + 3-s + 4-s − 6·5-s + 3·6-s + 7·7-s − 21·8-s − 26·9-s − 18·10-s − 30·11-s + 12-s − 22·13-s + 21·14-s − 6·15-s − 71·16-s − 78·18-s + 83·19-s − 6·20-s + 7·21-s − 90·22-s − 48·23-s − 21·24-s − 89·25-s − 66·26-s − 53·27-s + 7·28-s + 15·29-s + ⋯
L(s)  = 1  + 1.06·2-s + 0.192·3-s + 1/8·4-s − 0.536·5-s + 0.204·6-s + 0.377·7-s − 0.928·8-s − 0.962·9-s − 0.569·10-s − 0.822·11-s + 0.0240·12-s − 0.469·13-s + 0.400·14-s − 0.103·15-s − 1.10·16-s − 1.02·18-s + 1.00·19-s − 0.0670·20-s + 0.0727·21-s − 0.872·22-s − 0.435·23-s − 0.178·24-s − 0.711·25-s − 0.497·26-s − 0.377·27-s + 0.0472·28-s + 0.0960·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2023 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2023 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2023\)    =    \(7 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(119.360\)
Root analytic conductor: \(10.9252\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: $\chi_{2023} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2023,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.910699772\)
\(L(\frac12)\) \(\approx\) \(1.910699772\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 - p T \)
17 \( 1 \)
good2 \( 1 - 3 T + p^{3} T^{2} \)
3 \( 1 - T + p^{3} T^{2} \)
5 \( 1 + 6 T + p^{3} T^{2} \)
11 \( 1 + 30 T + p^{3} T^{2} \)
13 \( 1 + 22 T + p^{3} T^{2} \)
19 \( 1 - 83 T + p^{3} T^{2} \)
23 \( 1 + 48 T + p^{3} T^{2} \)
29 \( 1 - 15 T + p^{3} T^{2} \)
31 \( 1 + 7 T + p^{3} T^{2} \)
37 \( 1 - 50 T + p^{3} T^{2} \)
41 \( 1 - 360 T + p^{3} T^{2} \)
43 \( 1 - 68 T + p^{3} T^{2} \)
47 \( 1 + 27 T + p^{3} T^{2} \)
53 \( 1 - 213 T + p^{3} T^{2} \)
59 \( 1 - 189 T + p^{3} T^{2} \)
61 \( 1 - 314 T + p^{3} T^{2} \)
67 \( 1 - 314 T + p^{3} T^{2} \)
71 \( 1 + 804 T + p^{3} T^{2} \)
73 \( 1 + 448 T + p^{3} T^{2} \)
79 \( 1 + 1060 T + p^{3} T^{2} \)
83 \( 1 - 873 T + p^{3} T^{2} \)
89 \( 1 - 270 T + p^{3} T^{2} \)
97 \( 1 - 1130 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.700747390928924328226715839680, −7.926653811034240853794489827594, −7.32594406418970882202414097246, −6.03255031374341326859937629720, −5.49880153509838802864598966109, −4.74424126418896486657960037920, −3.90156937170694219925473101549, −3.05111356095680159879296359130, −2.30618882105488553885934667513, −0.50681231527312268211104195951, 0.50681231527312268211104195951, 2.30618882105488553885934667513, 3.05111356095680159879296359130, 3.90156937170694219925473101549, 4.74424126418896486657960037920, 5.49880153509838802864598966109, 6.03255031374341326859937629720, 7.32594406418970882202414097246, 7.926653811034240853794489827594, 8.700747390928924328226715839680

Graph of the $Z$-function along the critical line