L(s) = 1 | − 2.45·2-s + 1.45·3-s + 4.03·4-s + 2.26·5-s − 3.58·6-s − 5.00·8-s − 0.876·9-s − 5.57·10-s − 5.41·11-s + 5.88·12-s − 3.23·13-s + 3.30·15-s + 4.22·16-s − 2.83·17-s + 2.15·18-s + 4.32·19-s + 9.15·20-s + 13.3·22-s + 6.99·23-s − 7.29·24-s + 0.138·25-s + 7.95·26-s − 5.64·27-s + 8.06·29-s − 8.11·30-s − 9.18·31-s − 0.374·32-s + ⋯ |
L(s) = 1 | − 1.73·2-s + 0.841·3-s + 2.01·4-s + 1.01·5-s − 1.46·6-s − 1.77·8-s − 0.292·9-s − 1.76·10-s − 1.63·11-s + 1.69·12-s − 0.897·13-s + 0.852·15-s + 1.05·16-s − 0.686·17-s + 0.507·18-s + 0.991·19-s + 2.04·20-s + 2.83·22-s + 1.45·23-s − 1.48·24-s + 0.0277·25-s + 1.55·26-s − 1.08·27-s + 1.49·29-s − 1.48·30-s − 1.64·31-s − 0.0662·32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2009 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2009 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 41 | \( 1 - T \) |
good | 2 | \( 1 + 2.45T + 2T^{2} \) |
| 3 | \( 1 - 1.45T + 3T^{2} \) |
| 5 | \( 1 - 2.26T + 5T^{2} \) |
| 11 | \( 1 + 5.41T + 11T^{2} \) |
| 13 | \( 1 + 3.23T + 13T^{2} \) |
| 17 | \( 1 + 2.83T + 17T^{2} \) |
| 19 | \( 1 - 4.32T + 19T^{2} \) |
| 23 | \( 1 - 6.99T + 23T^{2} \) |
| 29 | \( 1 - 8.06T + 29T^{2} \) |
| 31 | \( 1 + 9.18T + 31T^{2} \) |
| 37 | \( 1 + 0.0469T + 37T^{2} \) |
| 43 | \( 1 + 6.31T + 43T^{2} \) |
| 47 | \( 1 + 5.26T + 47T^{2} \) |
| 53 | \( 1 - 6.43T + 53T^{2} \) |
| 59 | \( 1 + 2.45T + 59T^{2} \) |
| 61 | \( 1 + 5.28T + 61T^{2} \) |
| 67 | \( 1 + 8.78T + 67T^{2} \) |
| 71 | \( 1 + 12.1T + 71T^{2} \) |
| 73 | \( 1 + 2.42T + 73T^{2} \) |
| 79 | \( 1 - 4.92T + 79T^{2} \) |
| 83 | \( 1 - 1.63T + 83T^{2} \) |
| 89 | \( 1 + 1.68T + 89T^{2} \) |
| 97 | \( 1 + 18.8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.891971736169585603043261049138, −8.158373907303274556649178513113, −7.49667080212994007533313460810, −6.86994516713706088967838273447, −5.70658465295966520191905091239, −4.95149522931480885821527814426, −2.95092082041346917091136601894, −2.58138860830674377135684017116, −1.61818608331242024158537996988, 0,
1.61818608331242024158537996988, 2.58138860830674377135684017116, 2.95092082041346917091136601894, 4.95149522931480885821527814426, 5.70658465295966520191905091239, 6.86994516713706088967838273447, 7.49667080212994007533313460810, 8.158373907303274556649178513113, 8.891971736169585603043261049138