L(s) = 1 | + (−0.809 + 0.587i)9-s + (−1.53 + 1.11i)13-s + (−0.363 + 1.11i)17-s + (0.5 + 1.53i)29-s + (−0.951 + 0.690i)37-s + (0.5 − 0.363i)41-s + 49-s + (−0.587 − 1.80i)53-s + (0.5 + 0.363i)61-s + (1.53 + 1.11i)73-s + (0.309 − 0.951i)81-s + (−1.30 − 0.951i)89-s + (0.363 + 1.11i)97-s − 1.61·101-s + (−0.5 + 0.363i)109-s + ⋯ |
L(s) = 1 | + (−0.809 + 0.587i)9-s + (−1.53 + 1.11i)13-s + (−0.363 + 1.11i)17-s + (0.5 + 1.53i)29-s + (−0.951 + 0.690i)37-s + (0.5 − 0.363i)41-s + 49-s + (−0.587 − 1.80i)53-s + (0.5 + 0.363i)61-s + (1.53 + 1.11i)73-s + (0.309 − 0.951i)81-s + (−1.30 − 0.951i)89-s + (0.363 + 1.11i)97-s − 1.61·101-s + (−0.5 + 0.363i)109-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.260 - 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.260 - 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7333702748\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7333702748\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 7 | \( 1 - T^{2} \) |
| 11 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 13 | \( 1 + (1.53 - 1.11i)T + (0.309 - 0.951i)T^{2} \) |
| 17 | \( 1 + (0.363 - 1.11i)T + (-0.809 - 0.587i)T^{2} \) |
| 19 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 23 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 29 | \( 1 + (-0.5 - 1.53i)T + (-0.809 + 0.587i)T^{2} \) |
| 31 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 37 | \( 1 + (0.951 - 0.690i)T + (0.309 - 0.951i)T^{2} \) |
| 41 | \( 1 + (-0.5 + 0.363i)T + (0.309 - 0.951i)T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 53 | \( 1 + (0.587 + 1.80i)T + (-0.809 + 0.587i)T^{2} \) |
| 59 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.363i)T + (0.309 + 0.951i)T^{2} \) |
| 67 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 71 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 73 | \( 1 + (-1.53 - 1.11i)T + (0.309 + 0.951i)T^{2} \) |
| 79 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 83 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 89 | \( 1 + (1.30 + 0.951i)T + (0.309 + 0.951i)T^{2} \) |
| 97 | \( 1 + (-0.363 - 1.11i)T + (-0.809 + 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.528917179490181244347573444266, −8.728090917585129606897154175515, −8.148669551595433607630963401051, −7.12341296616466444636435157258, −6.58394229423926752364679036708, −5.43476147540392267711147679789, −4.84387293093768339823996376621, −3.84127804581096523936710819011, −2.66956096770201140043368430675, −1.81641116715361197686119114472,
0.49435598869371392984368206503, 2.43648941956941320723457294503, 3.00869180905099925723995394103, 4.25401328979997746556322956999, 5.18179388072365709717245653532, 5.83798866795066162637890334076, 6.83023313490977931125416196919, 7.59447837400212752971619439322, 8.279447974189344340513696335779, 9.282781844669046413020592985526