L(s) = 1 | + (0.309 − 0.951i)9-s + (−0.363 + 1.11i)13-s + (1.53 + 1.11i)17-s + (0.5 − 0.363i)29-s + (0.587 − 1.80i)37-s + (0.5 − 1.53i)41-s + 49-s + (−0.951 + 0.690i)53-s + (0.5 + 1.53i)61-s + (0.363 + 1.11i)73-s + (−0.809 − 0.587i)81-s + (−0.190 − 0.587i)89-s + (−1.53 + 1.11i)97-s + 0.618·101-s + (−0.5 + 1.53i)109-s + ⋯ |
L(s) = 1 | + (0.309 − 0.951i)9-s + (−0.363 + 1.11i)13-s + (1.53 + 1.11i)17-s + (0.5 − 0.363i)29-s + (0.587 − 1.80i)37-s + (0.5 − 1.53i)41-s + 49-s + (−0.951 + 0.690i)53-s + (0.5 + 1.53i)61-s + (0.363 + 1.11i)73-s + (−0.809 − 0.587i)81-s + (−0.190 − 0.587i)89-s + (−1.53 + 1.11i)97-s + 0.618·101-s + (−0.5 + 1.53i)109-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0119i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2000 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0119i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.226677684\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.226677684\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 7 | \( 1 - T^{2} \) |
| 11 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 13 | \( 1 + (0.363 - 1.11i)T + (-0.809 - 0.587i)T^{2} \) |
| 17 | \( 1 + (-1.53 - 1.11i)T + (0.309 + 0.951i)T^{2} \) |
| 19 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 23 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 29 | \( 1 + (-0.5 + 0.363i)T + (0.309 - 0.951i)T^{2} \) |
| 31 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 37 | \( 1 + (-0.587 + 1.80i)T + (-0.809 - 0.587i)T^{2} \) |
| 41 | \( 1 + (-0.5 + 1.53i)T + (-0.809 - 0.587i)T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 53 | \( 1 + (0.951 - 0.690i)T + (0.309 - 0.951i)T^{2} \) |
| 59 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 1.53i)T + (-0.809 + 0.587i)T^{2} \) |
| 67 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 71 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 73 | \( 1 + (-0.363 - 1.11i)T + (-0.809 + 0.587i)T^{2} \) |
| 79 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 83 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 89 | \( 1 + (0.190 + 0.587i)T + (-0.809 + 0.587i)T^{2} \) |
| 97 | \( 1 + (1.53 - 1.11i)T + (0.309 - 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.331635224012857765542338454093, −8.704885312870159891691917423911, −7.68317823301116862650968337570, −7.05346314941187547529294262395, −6.14029733976521658349422507521, −5.50812089311200934233797220077, −4.19422591319230789415155372944, −3.74935178407869263455676998620, −2.44942633265448784985370316401, −1.20726570994757818288573132535,
1.18301575992665757179305782362, 2.63253375070817346907288119099, 3.32792880088743525522245812877, 4.75176391173091011651157002334, 5.15999341484507627187051428567, 6.13104954175784424368958083218, 7.17166073111331420703966369496, 7.87550797230224740235584754898, 8.293039712849236862453808445113, 9.653247330233386310778488147322