L(s) = 1 | + (1.39 − 0.221i)2-s + (−0.618 − 0.618i)3-s + (1.90 − 0.618i)4-s + (−1 − 0.726i)6-s + (1.90 + 1.90i)7-s + (2.52 − 1.28i)8-s − 2.23i·9-s − 3.23·11-s + (−1.55 − 0.793i)12-s + (−0.726 + 0.726i)13-s + (3.07 + 2.23i)14-s + (3.23 − 2.35i)16-s + (1 − i)17-s + (−0.494 − 3.12i)18-s + 2i·19-s + ⋯ |
L(s) = 1 | + (0.987 − 0.156i)2-s + (−0.356 − 0.356i)3-s + (0.951 − 0.309i)4-s + (−0.408 − 0.296i)6-s + (0.718 + 0.718i)7-s + (0.891 − 0.453i)8-s − 0.745i·9-s − 0.975·11-s + (−0.449 − 0.229i)12-s + (−0.201 + 0.201i)13-s + (0.822 + 0.597i)14-s + (0.809 − 0.587i)16-s + (0.242 − 0.242i)17-s + (−0.116 − 0.736i)18-s + 0.458i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.854 + 0.519i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.854 + 0.519i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.85183 - 0.518478i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.85183 - 0.518478i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.39 + 0.221i)T \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (0.618 + 0.618i)T + 3iT^{2} \) |
| 7 | \( 1 + (-1.90 - 1.90i)T + 7iT^{2} \) |
| 11 | \( 1 + 3.23T + 11T^{2} \) |
| 13 | \( 1 + (0.726 - 0.726i)T - 13iT^{2} \) |
| 17 | \( 1 + (-1 + i)T - 17iT^{2} \) |
| 19 | \( 1 - 2iT - 19T^{2} \) |
| 23 | \( 1 + (4.25 - 4.25i)T - 23iT^{2} \) |
| 29 | \( 1 + 6.15T + 29T^{2} \) |
| 31 | \( 1 - 8.50iT - 31T^{2} \) |
| 37 | \( 1 + (-0.726 - 0.726i)T + 37iT^{2} \) |
| 41 | \( 1 - 5.70T + 41T^{2} \) |
| 43 | \( 1 + (4.61 + 4.61i)T + 43iT^{2} \) |
| 47 | \( 1 + (3.35 + 3.35i)T + 47iT^{2} \) |
| 53 | \( 1 + (-3.07 + 3.07i)T - 53iT^{2} \) |
| 59 | \( 1 - 0.472iT - 59T^{2} \) |
| 61 | \( 1 + 0.898iT - 61T^{2} \) |
| 67 | \( 1 + (-4.61 + 4.61i)T - 67iT^{2} \) |
| 71 | \( 1 + 11.4iT - 71T^{2} \) |
| 73 | \( 1 + (-4.70 - 4.70i)T + 73iT^{2} \) |
| 79 | \( 1 - 2.90T + 79T^{2} \) |
| 83 | \( 1 + (-6.61 - 6.61i)T + 83iT^{2} \) |
| 89 | \( 1 + 2.47iT - 89T^{2} \) |
| 97 | \( 1 + (4.23 - 4.23i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.25747138652873382313369264841, −11.76853935599940209942585234955, −10.78971636512886401624567493516, −9.601708707521723670030732019825, −8.098209355612432597993219051274, −7.03846234006223252394823586982, −5.80145738188588626501550726327, −5.10093991843398191310918141067, −3.51414119928654478589056970180, −1.92304072184182163364852366611,
2.34428497374263965322526383139, 4.12672430378085787190694585318, 4.98216671608052652283445951302, 5.96869962013513361005058564487, 7.51669749806652905011847672799, 8.034723415744077122973812645422, 10.03817678258035548536588962602, 10.86568825028244623603151448319, 11.44777664339695106050215223163, 12.76882828377346002043991564719