L(s) = 1 | + (0.642 + 1.26i)2-s + (1.61 + 1.61i)3-s + (−1.17 + 1.61i)4-s + (−1.00 + 3.07i)6-s + (−1.17 − 1.17i)7-s + (−2.79 − 0.442i)8-s + 2.23i·9-s + 1.23·11-s + (−4.52 + 0.715i)12-s + (3.07 − 3.07i)13-s + (0.726 − 2.23i)14-s + (−1.23 − 3.80i)16-s + (1 − i)17-s + (−2.81 + 1.43i)18-s + 2i·19-s + ⋯ |
L(s) = 1 | + (0.453 + 0.891i)2-s + (0.934 + 0.934i)3-s + (−0.587 + 0.809i)4-s + (−0.408 + 1.25i)6-s + (−0.444 − 0.444i)7-s + (−0.987 − 0.156i)8-s + 0.745i·9-s + 0.372·11-s + (−1.30 + 0.206i)12-s + (0.853 − 0.853i)13-s + (0.194 − 0.597i)14-s + (−0.309 − 0.951i)16-s + (0.242 − 0.242i)17-s + (−0.664 + 0.338i)18-s + 0.458i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.386 - 0.922i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.386 - 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.974641 + 1.46466i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.974641 + 1.46466i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.642 - 1.26i)T \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (-1.61 - 1.61i)T + 3iT^{2} \) |
| 7 | \( 1 + (1.17 + 1.17i)T + 7iT^{2} \) |
| 11 | \( 1 - 1.23T + 11T^{2} \) |
| 13 | \( 1 + (-3.07 + 3.07i)T - 13iT^{2} \) |
| 17 | \( 1 + (-1 + i)T - 17iT^{2} \) |
| 19 | \( 1 - 2iT - 19T^{2} \) |
| 23 | \( 1 + (2.62 - 2.62i)T - 23iT^{2} \) |
| 29 | \( 1 + 1.45T + 29T^{2} \) |
| 31 | \( 1 - 5.25iT - 31T^{2} \) |
| 37 | \( 1 + (3.07 + 3.07i)T + 37iT^{2} \) |
| 41 | \( 1 + 7.70T + 41T^{2} \) |
| 43 | \( 1 + (2.38 + 2.38i)T + 43iT^{2} \) |
| 47 | \( 1 + (-7.33 - 7.33i)T + 47iT^{2} \) |
| 53 | \( 1 + (-0.726 + 0.726i)T - 53iT^{2} \) |
| 59 | \( 1 + 8.47iT - 59T^{2} \) |
| 61 | \( 1 + 9.95iT - 61T^{2} \) |
| 67 | \( 1 + (-2.38 + 2.38i)T - 67iT^{2} \) |
| 71 | \( 1 - 7.05iT - 71T^{2} \) |
| 73 | \( 1 + (8.70 + 8.70i)T + 73iT^{2} \) |
| 79 | \( 1 + 12.3T + 79T^{2} \) |
| 83 | \( 1 + (-4.38 - 4.38i)T + 83iT^{2} \) |
| 89 | \( 1 - 6.47iT - 89T^{2} \) |
| 97 | \( 1 + (-0.236 + 0.236i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.14118568901785357071268792624, −12.04424440920014949026648973650, −10.51508859910807288510723292403, −9.585249148302356130978990063359, −8.689937146364042069446578005398, −7.83153369410343967377575543465, −6.56209052949170425186910484272, −5.30573431360074854962504127005, −3.89169995707503292765480362264, −3.29703875223300126537358009325,
1.66293601948795390577150572353, 2.87171723637115852019108995166, 4.13305227326805171179908027124, 5.87566125278575581001131179873, 6.93090738906352670405269315156, 8.471753333002247427675441591057, 9.061769314599030876701383289156, 10.22349138514401259008603522991, 11.50646537463926710335399239866, 12.25341261954940438983462748149