L(s) = 1 | + (1 − i)2-s + (−2.22 − 2.22i)3-s − 2i·4-s − 4.44·6-s + (−2 − 2i)8-s + 6.89i·9-s + 0.550·11-s + (−4.44 + 4.44i)12-s − 4·16-s + (1.67 − 1.67i)17-s + (6.89 + 6.89i)18-s − 8.34i·19-s + (0.550 − 0.550i)22-s + 8.89i·24-s + (8.67 − 8.67i)27-s + ⋯ |
L(s) = 1 | + (0.707 − 0.707i)2-s + (−1.28 − 1.28i)3-s − i·4-s − 1.81·6-s + (−0.707 − 0.707i)8-s + 2.29i·9-s + 0.165·11-s + (−1.28 + 1.28i)12-s − 16-s + (0.406 − 0.406i)17-s + (1.62 + 1.62i)18-s − 1.91i·19-s + (0.117 − 0.117i)22-s + 1.81i·24-s + (1.66 − 1.66i)27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.991 + 0.130i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.991 + 0.130i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0674611 - 1.02732i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0674611 - 1.02732i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1 + i)T \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (2.22 + 2.22i)T + 3iT^{2} \) |
| 7 | \( 1 + 7iT^{2} \) |
| 11 | \( 1 - 0.550T + 11T^{2} \) |
| 13 | \( 1 - 13iT^{2} \) |
| 17 | \( 1 + (-1.67 + 1.67i)T - 17iT^{2} \) |
| 19 | \( 1 + 8.34iT - 19T^{2} \) |
| 23 | \( 1 - 23iT^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 - 31T^{2} \) |
| 37 | \( 1 + 37iT^{2} \) |
| 41 | \( 1 - 12.7T + 41T^{2} \) |
| 43 | \( 1 + (-6 - 6i)T + 43iT^{2} \) |
| 47 | \( 1 + 47iT^{2} \) |
| 53 | \( 1 - 53iT^{2} \) |
| 59 | \( 1 - 6iT - 59T^{2} \) |
| 61 | \( 1 - 61T^{2} \) |
| 67 | \( 1 + (5.57 - 5.57i)T - 67iT^{2} \) |
| 71 | \( 1 - 71T^{2} \) |
| 73 | \( 1 + (7.22 + 7.22i)T + 73iT^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 + (-10.0 - 10.0i)T + 83iT^{2} \) |
| 89 | \( 1 - 13.8iT - 89T^{2} \) |
| 97 | \( 1 + (-12 + 12i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.97334605219536658353673093852, −11.34092940492418680626871772698, −10.61963208972812507735020359237, −9.222388585541298374123273188096, −7.47121923904750975706704075665, −6.57068787004963010496849724737, −5.62786658191637446009706905229, −4.62490756329676464249240048063, −2.52182002874068447298479444649, −0.879868047995396952604262772193,
3.61167382106582127343927709295, 4.46334661418564516802034164156, 5.67084716115985473628009867567, 6.16520275082593948679464711423, 7.66520205942067832575048690576, 9.063529133533466490892419008060, 10.15081175199595013384971987651, 11.06631068167425087423492015440, 12.06320042319062814062143586895, 12.63065183198354886349108728080