L(s) = 1 | + (−1.26 − 0.642i)2-s + (1.61 + 1.61i)3-s + (1.17 + 1.61i)4-s + (−1.00 − 3.07i)6-s + (1.17 + 1.17i)7-s + (−0.442 − 2.79i)8-s + 2.23i·9-s + 1.23·11-s + (−0.715 + 4.52i)12-s + (−3.07 + 3.07i)13-s + (−0.726 − 2.23i)14-s + (−1.23 + 3.80i)16-s + (1 − i)17-s + (1.43 − 2.81i)18-s + 2i·19-s + ⋯ |
L(s) = 1 | + (−0.891 − 0.453i)2-s + (0.934 + 0.934i)3-s + (0.587 + 0.809i)4-s + (−0.408 − 1.25i)6-s + (0.444 + 0.444i)7-s + (−0.156 − 0.987i)8-s + 0.745i·9-s + 0.372·11-s + (−0.206 + 1.30i)12-s + (−0.853 + 0.853i)13-s + (−0.194 − 0.597i)14-s + (−0.309 + 0.951i)16-s + (0.242 − 0.242i)17-s + (0.338 − 0.664i)18-s + 0.458i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.757 - 0.652i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.757 - 0.652i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.02970 + 0.382100i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.02970 + 0.382100i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.26 + 0.642i)T \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (-1.61 - 1.61i)T + 3iT^{2} \) |
| 7 | \( 1 + (-1.17 - 1.17i)T + 7iT^{2} \) |
| 11 | \( 1 - 1.23T + 11T^{2} \) |
| 13 | \( 1 + (3.07 - 3.07i)T - 13iT^{2} \) |
| 17 | \( 1 + (-1 + i)T - 17iT^{2} \) |
| 19 | \( 1 - 2iT - 19T^{2} \) |
| 23 | \( 1 + (-2.62 + 2.62i)T - 23iT^{2} \) |
| 29 | \( 1 - 1.45T + 29T^{2} \) |
| 31 | \( 1 + 5.25iT - 31T^{2} \) |
| 37 | \( 1 + (-3.07 - 3.07i)T + 37iT^{2} \) |
| 41 | \( 1 + 7.70T + 41T^{2} \) |
| 43 | \( 1 + (2.38 + 2.38i)T + 43iT^{2} \) |
| 47 | \( 1 + (7.33 + 7.33i)T + 47iT^{2} \) |
| 53 | \( 1 + (0.726 - 0.726i)T - 53iT^{2} \) |
| 59 | \( 1 + 8.47iT - 59T^{2} \) |
| 61 | \( 1 - 9.95iT - 61T^{2} \) |
| 67 | \( 1 + (-2.38 + 2.38i)T - 67iT^{2} \) |
| 71 | \( 1 + 7.05iT - 71T^{2} \) |
| 73 | \( 1 + (8.70 + 8.70i)T + 73iT^{2} \) |
| 79 | \( 1 - 12.3T + 79T^{2} \) |
| 83 | \( 1 + (-4.38 - 4.38i)T + 83iT^{2} \) |
| 89 | \( 1 - 6.47iT - 89T^{2} \) |
| 97 | \( 1 + (-0.236 + 0.236i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.18687571875481413493200038112, −11.52195345558914677733403499535, −10.25846627620889975865904604415, −9.570239037442918998330196212717, −8.808410267178930352810571389835, −7.995559798627476170927599386996, −6.69245805737588940104288613632, −4.71526499195494545692205241163, −3.46671434856337795698064935359, −2.17309780129609237942546923878,
1.38672661548188043473243121869, 2.87619941409330903017530824156, 5.09614184092633099521472023471, 6.65046471651950029138491980061, 7.51481467911369695306949497931, 8.136621303597876493640295723773, 9.112253276256598027194108183182, 10.17446830701906442919072819736, 11.22727175097462507571192991165, 12.43055846360126936641775761706