L(s) = 1 | + (1.39 + 0.221i)2-s + (−0.618 + 0.618i)3-s + (1.90 + 0.618i)4-s + (−1 + 0.726i)6-s + (1.90 − 1.90i)7-s + (2.52 + 1.28i)8-s + 2.23i·9-s − 3.23·11-s + (−1.55 + 0.793i)12-s + (−0.726 − 0.726i)13-s + (3.07 − 2.23i)14-s + (3.23 + 2.35i)16-s + (1 + i)17-s + (−0.494 + 3.12i)18-s − 2i·19-s + ⋯ |
L(s) = 1 | + (0.987 + 0.156i)2-s + (−0.356 + 0.356i)3-s + (0.951 + 0.309i)4-s + (−0.408 + 0.296i)6-s + (0.718 − 0.718i)7-s + (0.891 + 0.453i)8-s + 0.745i·9-s − 0.975·11-s + (−0.449 + 0.229i)12-s + (−0.201 − 0.201i)13-s + (0.822 − 0.597i)14-s + (0.809 + 0.587i)16-s + (0.242 + 0.242i)17-s + (−0.116 + 0.736i)18-s − 0.458i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.854 - 0.519i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.854 - 0.519i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.85183 + 0.518478i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.85183 + 0.518478i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.39 - 0.221i)T \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (0.618 - 0.618i)T - 3iT^{2} \) |
| 7 | \( 1 + (-1.90 + 1.90i)T - 7iT^{2} \) |
| 11 | \( 1 + 3.23T + 11T^{2} \) |
| 13 | \( 1 + (0.726 + 0.726i)T + 13iT^{2} \) |
| 17 | \( 1 + (-1 - i)T + 17iT^{2} \) |
| 19 | \( 1 + 2iT - 19T^{2} \) |
| 23 | \( 1 + (4.25 + 4.25i)T + 23iT^{2} \) |
| 29 | \( 1 + 6.15T + 29T^{2} \) |
| 31 | \( 1 + 8.50iT - 31T^{2} \) |
| 37 | \( 1 + (-0.726 + 0.726i)T - 37iT^{2} \) |
| 41 | \( 1 - 5.70T + 41T^{2} \) |
| 43 | \( 1 + (4.61 - 4.61i)T - 43iT^{2} \) |
| 47 | \( 1 + (3.35 - 3.35i)T - 47iT^{2} \) |
| 53 | \( 1 + (-3.07 - 3.07i)T + 53iT^{2} \) |
| 59 | \( 1 + 0.472iT - 59T^{2} \) |
| 61 | \( 1 - 0.898iT - 61T^{2} \) |
| 67 | \( 1 + (-4.61 - 4.61i)T + 67iT^{2} \) |
| 71 | \( 1 - 11.4iT - 71T^{2} \) |
| 73 | \( 1 + (-4.70 + 4.70i)T - 73iT^{2} \) |
| 79 | \( 1 - 2.90T + 79T^{2} \) |
| 83 | \( 1 + (-6.61 + 6.61i)T - 83iT^{2} \) |
| 89 | \( 1 - 2.47iT - 89T^{2} \) |
| 97 | \( 1 + (4.23 + 4.23i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.76882828377346002043991564719, −11.44777664339695106050215223163, −10.86568825028244623603151448319, −10.03817678258035548536588962602, −8.034723415744077122973812645422, −7.51669749806652905011847672799, −5.96869962013513361005058564487, −4.98216671608052652283445951302, −4.12672430378085787190694585318, −2.34428497374263965322526383139,
1.92304072184182163364852366611, 3.51414119928654478589056970180, 5.10093991843398191310918141067, 5.80145738188588626501550726327, 7.03846234006223252394823586982, 8.098209355612432597993219051274, 9.601708707521723670030732019825, 10.78971636512886401624567493516, 11.76853935599940209942585234955, 12.25747138652873382313369264841