L(s) = 1 | + (1 + i)2-s + (2 − 2i)3-s + 2i·4-s + 4·6-s + (−2 + 2i)8-s − 5i·9-s − 6·11-s + (4 + 4i)12-s − 4·16-s + (4 + 4i)17-s + (5 − 5i)18-s − 2i·19-s + (−6 − 6i)22-s + 8i·24-s + (−4 − 4i)27-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)2-s + (1.15 − 1.15i)3-s + i·4-s + 1.63·6-s + (−0.707 + 0.707i)8-s − 1.66i·9-s − 1.80·11-s + (1.15 + 1.15i)12-s − 16-s + (0.970 + 0.970i)17-s + (1.17 − 1.17i)18-s − 0.458i·19-s + (−1.27 − 1.27i)22-s + 1.63i·24-s + (−0.769 − 0.769i)27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.973 - 0.229i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.973 - 0.229i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.11645 + 0.246426i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.11645 + 0.246426i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1 - i)T \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + (-2 + 2i)T - 3iT^{2} \) |
| 7 | \( 1 - 7iT^{2} \) |
| 11 | \( 1 + 6T + 11T^{2} \) |
| 13 | \( 1 + 13iT^{2} \) |
| 17 | \( 1 + (-4 - 4i)T + 17iT^{2} \) |
| 19 | \( 1 + 2iT - 19T^{2} \) |
| 23 | \( 1 + 23iT^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 - 31T^{2} \) |
| 37 | \( 1 - 37iT^{2} \) |
| 41 | \( 1 + 6T + 41T^{2} \) |
| 43 | \( 1 + (-6 + 6i)T - 43iT^{2} \) |
| 47 | \( 1 - 47iT^{2} \) |
| 53 | \( 1 + 53iT^{2} \) |
| 59 | \( 1 + 6iT - 59T^{2} \) |
| 61 | \( 1 - 61T^{2} \) |
| 67 | \( 1 + (6 + 6i)T + 67iT^{2} \) |
| 71 | \( 1 - 71T^{2} \) |
| 73 | \( 1 + (-12 + 12i)T - 73iT^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 + (-2 + 2i)T - 83iT^{2} \) |
| 89 | \( 1 - 18iT - 89T^{2} \) |
| 97 | \( 1 + (-12 - 12i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.83461125882297384840720534982, −12.16709337580430776584670510375, −10.59309616654074349556559346898, −9.024174749586312479583394624138, −7.940817487311768164169907409616, −7.67781266462110170830955028344, −6.43392652598721456379763884018, −5.20188861543177951230871158341, −3.44399200216977935047946699399, −2.36282794789362496136437965985,
2.53944393185318725803307799768, 3.38425863832263344277539571706, 4.67995772602138674958764101542, 5.53793135770770986041082780606, 7.56544907154702072696127104846, 8.684520954755740637860495321363, 9.906132805346180439449932564624, 10.20659584223364561574361795293, 11.31279950412465471742841070728, 12.59632793749163586086107653210