L(s) = 1 | − 9·3-s − 26·7-s + 54·9-s − 59·11-s − 28·13-s − 5·17-s + 109·19-s + 234·21-s + 194·23-s − 243·27-s − 32·29-s + 10·31-s + 531·33-s + 198·37-s + 252·39-s + 117·41-s − 388·43-s + 68·47-s + 333·49-s + 45·51-s + 18·53-s − 981·57-s + 392·59-s − 710·61-s − 1.40e3·63-s + 253·67-s − 1.74e3·69-s + ⋯ |
L(s) = 1 | − 1.73·3-s − 1.40·7-s + 2·9-s − 1.61·11-s − 0.597·13-s − 0.0713·17-s + 1.31·19-s + 2.43·21-s + 1.75·23-s − 1.73·27-s − 0.204·29-s + 0.0579·31-s + 2.80·33-s + 0.879·37-s + 1.03·39-s + 0.445·41-s − 1.37·43-s + 0.211·47-s + 0.970·49-s + 0.123·51-s + 0.0466·53-s − 2.27·57-s + 0.864·59-s − 1.49·61-s − 2.80·63-s + 0.461·67-s − 3.04·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 200 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.5016799116\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5016799116\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
good | 3 | \( 1 + p^{2} T + p^{3} T^{2} \) |
| 7 | \( 1 + 26 T + p^{3} T^{2} \) |
| 11 | \( 1 + 59 T + p^{3} T^{2} \) |
| 13 | \( 1 + 28 T + p^{3} T^{2} \) |
| 17 | \( 1 + 5 T + p^{3} T^{2} \) |
| 19 | \( 1 - 109 T + p^{3} T^{2} \) |
| 23 | \( 1 - 194 T + p^{3} T^{2} \) |
| 29 | \( 1 + 32 T + p^{3} T^{2} \) |
| 31 | \( 1 - 10 T + p^{3} T^{2} \) |
| 37 | \( 1 - 198 T + p^{3} T^{2} \) |
| 41 | \( 1 - 117 T + p^{3} T^{2} \) |
| 43 | \( 1 + 388 T + p^{3} T^{2} \) |
| 47 | \( 1 - 68 T + p^{3} T^{2} \) |
| 53 | \( 1 - 18 T + p^{3} T^{2} \) |
| 59 | \( 1 - 392 T + p^{3} T^{2} \) |
| 61 | \( 1 + 710 T + p^{3} T^{2} \) |
| 67 | \( 1 - 253 T + p^{3} T^{2} \) |
| 71 | \( 1 + 612 T + p^{3} T^{2} \) |
| 73 | \( 1 - 549 T + p^{3} T^{2} \) |
| 79 | \( 1 - 414 T + p^{3} T^{2} \) |
| 83 | \( 1 - 121 T + p^{3} T^{2} \) |
| 89 | \( 1 + 81 T + p^{3} T^{2} \) |
| 97 | \( 1 - 1502 T + p^{3} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.00586198549451905557587564057, −11.01575675197227094063879906510, −10.21560922558128184478271897619, −9.453388275223862237477712941719, −7.53970899492424876315488848537, −6.70084975664286266857129467903, −5.61071272134961031897890661096, −4.88983074140591676150401453906, −3.01832712898436031290790617307, −0.56457555693591333235768816055,
0.56457555693591333235768816055, 3.01832712898436031290790617307, 4.88983074140591676150401453906, 5.61071272134961031897890661096, 6.70084975664286266857129467903, 7.53970899492424876315488848537, 9.453388275223862237477712941719, 10.21560922558128184478271897619, 11.01575675197227094063879906510, 12.00586198549451905557587564057