Properties

Label 2-2-1.1-c35-0-0
Degree $2$
Conductor $2$
Sign $1$
Analytic cond. $15.5190$
Root an. cond. $3.93941$
Motivic weight $35$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.31e5·2-s + 3.64e7·3-s + 1.71e10·4-s + 3.89e11·5-s − 4.78e12·6-s − 1.29e14·7-s − 2.25e15·8-s − 4.86e16·9-s − 5.09e16·10-s + 4.69e17·11-s + 6.26e17·12-s + 2.85e19·13-s + 1.69e19·14-s + 1.41e19·15-s + 2.95e20·16-s + 5.39e21·17-s + 6.38e21·18-s + 3.41e22·19-s + 6.68e21·20-s − 4.73e21·21-s − 6.15e22·22-s − 1.70e23·23-s − 8.21e22·24-s − 2.75e24·25-s − 3.74e24·26-s − 3.60e24·27-s − 2.22e24·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.163·3-s + 1/2·4-s + 0.228·5-s − 0.115·6-s − 0.210·7-s − 0.353·8-s − 0.973·9-s − 0.161·10-s + 0.280·11-s + 0.0815·12-s + 0.915·13-s + 0.148·14-s + 0.0372·15-s + 1/4·16-s + 1.58·17-s + 0.688·18-s + 1.43·19-s + 0.114·20-s − 0.0343·21-s − 0.198·22-s − 0.251·23-s − 0.0576·24-s − 0.947·25-s − 0.647·26-s − 0.321·27-s − 0.105·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(36-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2 ^{s/2} \, \Gamma_{\C}(s+35/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2\)
Sign: $1$
Analytic conductor: \(15.5190\)
Root analytic conductor: \(3.93941\)
Motivic weight: \(35\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2,\ (\ :35/2),\ 1)\)

Particular Values

\(L(18)\) \(\approx\) \(1.442420888\)
\(L(\frac12)\) \(\approx\) \(1.442420888\)
\(L(\frac{37}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + p^{17} T \)
good3 \( 1 - 4054972 p^{2} T + p^{35} T^{2} \)
5 \( 1 - 622513374 p^{4} T + p^{35} T^{2} \)
7 \( 1 + 2646721826344 p^{2} T + p^{35} T^{2} \)
11 \( 1 - 42694415520197532 p T + p^{35} T^{2} \)
13 \( 1 - 168884893755185702 p^{2} T + p^{35} T^{2} \)
17 \( 1 - \)\(31\!\cdots\!42\)\( p T + p^{35} T^{2} \)
19 \( 1 - \)\(34\!\cdots\!80\)\( T + p^{35} T^{2} \)
23 \( 1 + \)\(17\!\cdots\!72\)\( T + p^{35} T^{2} \)
29 \( 1 - \)\(15\!\cdots\!30\)\( p T + p^{35} T^{2} \)
31 \( 1 - \)\(62\!\cdots\!92\)\( p T + p^{35} T^{2} \)
37 \( 1 - \)\(14\!\cdots\!54\)\( T + p^{35} T^{2} \)
41 \( 1 - \)\(15\!\cdots\!02\)\( T + p^{35} T^{2} \)
43 \( 1 - \)\(37\!\cdots\!08\)\( T + p^{35} T^{2} \)
47 \( 1 + \)\(31\!\cdots\!76\)\( T + p^{35} T^{2} \)
53 \( 1 - \)\(65\!\cdots\!98\)\( T + p^{35} T^{2} \)
59 \( 1 + \)\(12\!\cdots\!60\)\( T + p^{35} T^{2} \)
61 \( 1 - \)\(16\!\cdots\!02\)\( T + p^{35} T^{2} \)
67 \( 1 - \)\(11\!\cdots\!64\)\( T + p^{35} T^{2} \)
71 \( 1 + \)\(39\!\cdots\!48\)\( T + p^{35} T^{2} \)
73 \( 1 + \)\(33\!\cdots\!22\)\( T + p^{35} T^{2} \)
79 \( 1 - \)\(13\!\cdots\!20\)\( T + p^{35} T^{2} \)
83 \( 1 + \)\(82\!\cdots\!32\)\( T + p^{35} T^{2} \)
89 \( 1 + \)\(13\!\cdots\!90\)\( T + p^{35} T^{2} \)
97 \( 1 - \)\(12\!\cdots\!74\)\( T + p^{35} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−19.43264405561843700104301053472, −17.76035914036157685652583947239, −16.15923175722422351225122210702, −14.08180551289234999134128382457, −11.70117022291941455492072374679, −9.758481819581346611695344614498, −8.082781809545285380311551617528, −5.94861633959122458605162986850, −3.08498461902152729531977855320, −1.02367589470683279942751643648, 1.02367589470683279942751643648, 3.08498461902152729531977855320, 5.94861633959122458605162986850, 8.082781809545285380311551617528, 9.758481819581346611695344614498, 11.70117022291941455492072374679, 14.08180551289234999134128382457, 16.15923175722422351225122210702, 17.76035914036157685652583947239, 19.43264405561843700104301053472

Graph of the $Z$-function along the critical line