Properties

Label 2-2-1.1-c19-0-1
Degree $2$
Conductor $2$
Sign $-1$
Analytic cond. $4.57633$
Root an. cond. $2.13923$
Motivic weight $19$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 512·2-s − 5.30e4·3-s + 2.62e5·4-s − 5.55e6·5-s − 2.71e7·6-s − 4.44e7·7-s + 1.34e8·8-s + 1.64e9·9-s − 2.84e9·10-s + 6.32e9·11-s − 1.39e10·12-s − 3.31e10·13-s − 2.27e10·14-s + 2.94e11·15-s + 6.87e10·16-s − 7.22e11·17-s + 8.44e11·18-s − 1.31e12·19-s − 1.45e12·20-s + 2.35e12·21-s + 3.23e12·22-s + 3.37e12·23-s − 7.11e12·24-s + 1.18e13·25-s − 1.69e13·26-s − 2.58e13·27-s − 1.16e13·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.55·3-s + 1/2·4-s − 1.27·5-s − 1.09·6-s − 0.416·7-s + 0.353·8-s + 1.41·9-s − 0.899·10-s + 0.808·11-s − 0.777·12-s − 0.866·13-s − 0.294·14-s + 1.97·15-s + 1/4·16-s − 1.47·17-s + 1.00·18-s − 0.933·19-s − 0.636·20-s + 0.648·21-s + 0.571·22-s + 0.391·23-s − 0.549·24-s + 0.618·25-s − 0.612·26-s − 0.652·27-s − 0.208·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(20-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2 ^{s/2} \, \Gamma_{\C}(s+19/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2\)
Sign: $-1$
Analytic conductor: \(4.57633\)
Root analytic conductor: \(2.13923\)
Motivic weight: \(19\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2,\ (\ :19/2),\ -1)\)

Particular Values

\(L(10)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{21}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p^{9} T \)
good3 \( 1 + 1964 p^{3} T + p^{19} T^{2} \)
5 \( 1 + 1111386 p T + p^{19} T^{2} \)
7 \( 1 + 6356632 p T + p^{19} T^{2} \)
11 \( 1 - 574606812 p T + p^{19} T^{2} \)
13 \( 1 + 33124973098 T + p^{19} T^{2} \)
17 \( 1 + 42491485422 p T + p^{19} T^{2} \)
19 \( 1 + 1312620671860 T + p^{19} T^{2} \)
23 \( 1 - 3379752742152 T + p^{19} T^{2} \)
29 \( 1 + 29378097714810 T + p^{19} T^{2} \)
31 \( 1 - 131976476089952 T + p^{19} T^{2} \)
37 \( 1 + 466464103652194 T + p^{19} T^{2} \)
41 \( 1 - 1889447681239482 T + p^{19} T^{2} \)
43 \( 1 + 4323507451065388 T + p^{19} T^{2} \)
47 \( 1 - 12103384387771536 T + p^{19} T^{2} \)
53 \( 1 + 30593935900444338 T + p^{19} T^{2} \)
59 \( 1 - 9908742512283780 T + p^{19} T^{2} \)
61 \( 1 + 91638145794467098 T + p^{19} T^{2} \)
67 \( 1 + 103349440678278244 T + p^{19} T^{2} \)
71 \( 1 - 285448322456957592 T + p^{19} T^{2} \)
73 \( 1 - 875008267167254042 T + p^{19} T^{2} \)
79 \( 1 + 1081394522969090320 T + p^{19} T^{2} \)
83 \( 1 + 665085275193888948 T + p^{19} T^{2} \)
89 \( 1 + 2020985164277790390 T + p^{19} T^{2} \)
97 \( 1 + 12825578365118067934 T + p^{19} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−23.05276239989389903411920004440, −22.11762280417523645318611837242, −19.52569344178777357525959063090, −17.03961370633913488581902506862, −15.49491446556203867298814658599, −12.38499480155881779294276405247, −11.18296215537182210750269782079, −6.67921857852025478297247090299, −4.43588104472406081847709277467, 0, 4.43588104472406081847709277467, 6.67921857852025478297247090299, 11.18296215537182210750269782079, 12.38499480155881779294276405247, 15.49491446556203867298814658599, 17.03961370633913488581902506862, 19.52569344178777357525959063090, 22.11762280417523645318611837242, 23.05276239989389903411920004440

Graph of the $Z$-function along the critical line