| L(s) = 1 | − 1.61i·2-s − 1.61·4-s + i·8-s − 9-s − 1.61·11-s + 1.61i·13-s + 1.61i·18-s − 0.618·19-s + 2.61i·22-s − 0.618i·23-s + 2.61·26-s − 1.61·31-s + i·32-s + 1.61·36-s + 1.00i·38-s + ⋯ |
| L(s) = 1 | − 1.61i·2-s − 1.61·4-s + i·8-s − 9-s − 1.61·11-s + 1.61i·13-s + 1.61i·18-s − 0.618·19-s + 2.61i·22-s − 0.618i·23-s + 2.61·26-s − 1.61·31-s + i·32-s + 1.61·36-s + 1.00i·38-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1975 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.03697125282\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.03697125282\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 79 | \( 1 + T \) |
| good | 2 | \( 1 + 1.61iT - T^{2} \) |
| 3 | \( 1 + T^{2} \) |
| 7 | \( 1 + T^{2} \) |
| 11 | \( 1 + 1.61T + T^{2} \) |
| 13 | \( 1 - 1.61iT - T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 + 0.618T + T^{2} \) |
| 23 | \( 1 + 0.618iT - T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + 1.61T + T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 - 0.618iT - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + 0.618iT - T^{2} \) |
| 83 | \( 1 + 2iT - T^{2} \) |
| 89 | \( 1 - 1.61T + T^{2} \) |
| 97 | \( 1 - 0.618iT - T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.608790585644413126444937228777, −8.943335239383761888326038294421, −8.323306009507282048502960736187, −7.25988627729544353865861835119, −6.20097218535694920580075245881, −5.15969279836730106289144859601, −4.41600050465062195330488982680, −3.42441867362929581086425294668, −2.53064405916649520857153098566, −1.86647075045885345822920846539,
0.02426107055162404012020213940, 2.47728253103133410443785772920, 3.46518184360324496114732800617, 4.87389026170591000067396495481, 5.51977287740885538396895729465, 5.83607964520597216631779331238, 6.94225707121889992903798731628, 7.84325823657376132945543632681, 8.064707500719258666781354775025, 8.835773701468435147153360461717