L(s) = 1 | + (−1.11 + 1.11i)2-s + (2.19 − 2.19i)3-s + 1.52i·4-s + (−1.87 + 1.87i)5-s + 4.88i·6-s + 5.07i·7-s + (−6.14 − 6.14i)8-s − 0.630i·9-s − 4.17i·10-s + (−9.24 + 9.24i)11-s + (3.33 + 3.33i)12-s + (2.79 − 2.79i)13-s + (−5.64 − 5.64i)14-s + 8.22i·15-s + 7.60·16-s + (−12.5 − 12.5i)17-s + ⋯ |
L(s) = 1 | + (−0.556 + 0.556i)2-s + (0.731 − 0.731i)3-s + 0.380i·4-s + (−0.374 + 0.374i)5-s + 0.814i·6-s + 0.724i·7-s + (−0.768 − 0.768i)8-s − 0.0701i·9-s − 0.417i·10-s + (−0.840 + 0.840i)11-s + (0.277 + 0.277i)12-s + (0.214 − 0.214i)13-s + (−0.403 − 0.403i)14-s + 0.548i·15-s + 0.475·16-s + (−0.736 − 0.736i)17-s + ⋯ |
Λ(s)=(=(197s/2ΓC(s)L(s)(−0.658−0.752i)Λ(3−s)
Λ(s)=(=(197s/2ΓC(s+1)L(s)(−0.658−0.752i)Λ(1−s)
Degree: |
2 |
Conductor: |
197
|
Sign: |
−0.658−0.752i
|
Analytic conductor: |
5.36786 |
Root analytic conductor: |
2.31686 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ197(14,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 197, ( :1), −0.658−0.752i)
|
Particular Values
L(23) |
≈ |
0.400594+0.882946i |
L(21) |
≈ |
0.400594+0.882946i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 197 | 1+(6.06−196.i)T |
good | 2 | 1+(1.11−1.11i)T−4iT2 |
| 3 | 1+(−2.19+2.19i)T−9iT2 |
| 5 | 1+(1.87−1.87i)T−25iT2 |
| 7 | 1−5.07iT−49T2 |
| 11 | 1+(9.24−9.24i)T−121iT2 |
| 13 | 1+(−2.79+2.79i)T−169iT2 |
| 17 | 1+(12.5+12.5i)T+289iT2 |
| 19 | 1−33.2iT−361T2 |
| 23 | 1−30.3T+529T2 |
| 29 | 1+36.4T+841T2 |
| 31 | 1+(5.16−5.16i)T−961iT2 |
| 37 | 1+42.9T+1.36e3T2 |
| 41 | 1−0.230iT−1.68e3T2 |
| 43 | 1+70.5iT−1.84e3T2 |
| 47 | 1−55.0iT−2.20e3T2 |
| 53 | 1−74.5T+2.80e3T2 |
| 59 | 1−75.7T+3.48e3T2 |
| 61 | 1−83.6T+3.72e3T2 |
| 67 | 1+(16.2−16.2i)T−4.48e3iT2 |
| 71 | 1+(65.9+65.9i)T+5.04e3iT2 |
| 73 | 1+(−53.0+53.0i)T−5.32e3iT2 |
| 79 | 1+(−39.8−39.8i)T+6.24e3iT2 |
| 83 | 1+121.iT−6.88e3T2 |
| 89 | 1+(81.1+81.1i)T+7.92e3iT2 |
| 97 | 1−168.iT−9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.73226401051962115661531045156, −11.86585402531543586525079782322, −10.52817686789098658184311763606, −9.187533702111006800091228675610, −8.449930388144303976735236468298, −7.46855231660282221457369602358, −7.07376441517262045430074110141, −5.42952585662251116690812500243, −3.47494695542059710337963504691, −2.24272951333048672610759400019,
0.59817383931822810092612788912, 2.66169053047255502330082588743, 3.99206395103038069077303644419, 5.25196946762335029852093061605, 6.85496984061652156723382527871, 8.489156494175677675596142870333, 8.869271111878537572164542681326, 9.939666037255036639538501247063, 10.84403394388024860374109907101, 11.39377607880859985183057283987