Properties

Label 2-197-1.1-c9-0-60
Degree $2$
Conductor $197$
Sign $1$
Analytic cond. $101.462$
Root an. cond. $10.0728$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 38.2·2-s − 153.·3-s + 949.·4-s + 2.10e3·5-s + 5.87e3·6-s + 5.20e3·7-s − 1.67e4·8-s + 3.92e3·9-s − 8.05e4·10-s + 1.44e4·11-s − 1.45e5·12-s − 2.71e4·13-s − 1.98e5·14-s − 3.23e5·15-s + 1.52e5·16-s + 3.05e5·17-s − 1.49e5·18-s + 7.50e5·19-s + 2.00e6·20-s − 7.99e5·21-s − 5.52e5·22-s + 3.03e4·23-s + 2.56e6·24-s + 2.48e6·25-s + 1.03e6·26-s + 2.42e6·27-s + 4.93e6·28-s + ⋯
L(s)  = 1  − 1.68·2-s − 1.09·3-s + 1.85·4-s + 1.50·5-s + 1.85·6-s + 0.819·7-s − 1.44·8-s + 0.199·9-s − 2.54·10-s + 0.297·11-s − 2.03·12-s − 0.263·13-s − 1.38·14-s − 1.65·15-s + 0.583·16-s + 0.888·17-s − 0.336·18-s + 1.32·19-s + 2.79·20-s − 0.896·21-s − 0.503·22-s + 0.0225·23-s + 1.58·24-s + 1.27·25-s + 0.445·26-s + 0.876·27-s + 1.51·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 197 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 197 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(197\)
Sign: $1$
Analytic conductor: \(101.462\)
Root analytic conductor: \(10.0728\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 197,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(1.134209147\)
\(L(\frac12)\) \(\approx\) \(1.134209147\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad197 \( 1 - 1.50e9T \)
good2 \( 1 + 38.2T + 512T^{2} \)
3 \( 1 + 153.T + 1.96e4T^{2} \)
5 \( 1 - 2.10e3T + 1.95e6T^{2} \)
7 \( 1 - 5.20e3T + 4.03e7T^{2} \)
11 \( 1 - 1.44e4T + 2.35e9T^{2} \)
13 \( 1 + 2.71e4T + 1.06e10T^{2} \)
17 \( 1 - 3.05e5T + 1.18e11T^{2} \)
19 \( 1 - 7.50e5T + 3.22e11T^{2} \)
23 \( 1 - 3.03e4T + 1.80e12T^{2} \)
29 \( 1 - 3.93e6T + 1.45e13T^{2} \)
31 \( 1 - 9.52e5T + 2.64e13T^{2} \)
37 \( 1 + 2.67e5T + 1.29e14T^{2} \)
41 \( 1 - 1.05e7T + 3.27e14T^{2} \)
43 \( 1 - 8.50e6T + 5.02e14T^{2} \)
47 \( 1 - 7.59e6T + 1.11e15T^{2} \)
53 \( 1 - 4.98e7T + 3.29e15T^{2} \)
59 \( 1 - 6.81e6T + 8.66e15T^{2} \)
61 \( 1 - 1.19e8T + 1.16e16T^{2} \)
67 \( 1 + 5.06e7T + 2.72e16T^{2} \)
71 \( 1 + 2.45e8T + 4.58e16T^{2} \)
73 \( 1 - 1.17e8T + 5.88e16T^{2} \)
79 \( 1 - 5.16e8T + 1.19e17T^{2} \)
83 \( 1 - 3.97e7T + 1.86e17T^{2} \)
89 \( 1 - 1.21e8T + 3.50e17T^{2} \)
97 \( 1 + 5.64e7T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.53485288718863756076602239266, −9.906875327945996334639183515156, −9.086275465481929966949259431640, −7.959274767613300191219665281936, −6.84354541263099422224873589244, −5.87202173746900331699292340674, −5.05743735881519411183394052606, −2.58383888565499948069171532781, −1.39557814240478518633408228100, −0.802263198127131588585034692665, 0.802263198127131588585034692665, 1.39557814240478518633408228100, 2.58383888565499948069171532781, 5.05743735881519411183394052606, 5.87202173746900331699292340674, 6.84354541263099422224873589244, 7.959274767613300191219665281936, 9.086275465481929966949259431640, 9.906875327945996334639183515156, 10.53485288718863756076602239266

Graph of the $Z$-function along the critical line